Open Information System for Minimizing of Iris Recognition Errors Abstract

Authors

  • Н.Н. Минакова Altai State University (Barnaul, Russia)
  • И.В. Петров Altai State University (Barnaul, Russia)

DOI:

https://doi.org/10.14258/izvasu(2015)1.1-30

Keywords:

iris, personal identification, biometrics, information system

Abstract

We present the information system that allows us to minimize errors in the iris recognition by varying the settings of iris recognition algorithms. The information system has a modular design that allows replacement of iris recognition algorithms at any stage for improving system performance and recognition quality. We propose a method for improving the iris detection accuracy by changing parameters of the integro-differential operator used for localization of iris boundaries. It is shown that the application of the integro-differential operator along a certain contour allows us to improve the iris detection accuracy. We demonstrate that changing parameters of the Gabor filter for normalized iris image parameterization also improves the quality of iris recognition. Conducted numerical experiments allow us to select optimal parameters for the Gabor filter. It is shown that a number of shifts in a comparison process of iris images binary codes affects the overall performance and recognition error. Thus, multiple shifts significantly reduce the recognition error due to getting invariance to eye rotation during the iris scanning.

DOI 10.14258/izvasu(2015)1.1-30

Downloads

Download data is not yet available.

Author Biographies

  • Н.Н. Минакова, Altai State University (Barnaul, Russia)
    доктор физико-математических наук, профессор кафедры прикладной физики, электроники и информационной безопасности
  • И.В. Петров, Altai State University (Barnaul, Russia)
    аспирант физико-технического факультета 

References

1
Wayman J. et al. Biometric Systems: Technology, Design and Performance Evaluation. - London, 2005.
2
Iridian Technologies. Historical timeline [Electronic resourse]. URL: www.iridiantech.com/about.php?page=4
3
Третьяков И.Н., Минакова Н.Н. Алгоритм разграничения доступа по радужной оболочке глаза для решения задач контроля доступа к информационным ресурсам // Доклады Томского государственного университета систем управления и радиоэлектроники. - 2010. - №1/1.
4
Петров И.В., Минакова Н.Н. Параметризация структуры радужной оболочки глаза с использованием вейвлет-преобразования // Известия Алтайского гос. ун-та. - 2011. - №1.
5
CASIA. Iris images database [Electronic resourse]. URL: http://biometrics.idealtest.org/dbDetailForUser.do?id=4
6
Proenc,a H., Alexandre L.A. Ubiris: A noisy iris image database[Electronic resourse]. URL: http://iris.di.ubi.pt/
7
Philips J. Ice [Electronic resourse]. URL: http://iris.nist. gov/ice/
8
Libor Masek. Recognition of human iris patterns [Electronic resourse]. URL: http://www.csse.uwa.edu.au/~pk/ studentprojects/libor/
9
Petrovska-Delacretaz D. et al. Guide to Biometric Reference Systems and Performance Evaluation. - London, 2009.
10
Кухарев ГА. Биометрические системы: методы и средства идентификации личности человека. - СПб., 2001.
11
Минакова Н.Н., Петров И.В. Информационная система анализа структуры радужной оболочки глаза // Ползуновский вестник. - 2012. - № 3/2.
12
Daugman J. High confidence visual recognition of persons by a test of statistical independence // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1993. -Vol. 15, № 11.

Downloads

How to Cite

Open Information System for Minimizing of Iris Recognition Errors Abstract. (2017). Izvestiya of Altai State University, 1/1(85). https://doi.org/10.14258/izvasu(2015)1.1-30

Similar Articles

1-10 of 127

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)