On three-dimensional locally homogeneous manifolds with vectorial torsion and zero curvature tensor

Authors

  • V.V. Balashchenko Belarusian State University
  • O.P. Khromova Altai State University
  • S.V. Klepikova Altai State University

Keywords:

metric connection, vectorial torsion, locally homogeneous manifold, curvature tensor

Abstract

This paper is devoted to solving the problem of studying locally homogeneous (pseudo)Riemannian manifolds with metric connection with vectorial torsion, the curvature tensor of which is zero.

References

1. Agricola I., Kraus M. Manifolds with vectorial torsion // Di erential Geometry and its Applications. - 2016. - Vol. 46. - P. 130-146.
2. De U.C., De B.K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. - 1995. - Vol. 54. - P. 111-117.
3. Sekigawa K. On some 3-dimensional curvature homogeneous spaces // Tensor N. S. - 1977. - Vol. 31. - P. 87-97.
4. Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. - 2007. - Vol. 57. - P. 1279-1291.
5. Mozhey N.P. Cohomology of three-simensional homogeneous spaces // Proceedings of BSTU. - 2014. - Vol. 6. - P. 13-18. - (in Russian).
6. Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. - 1976. - Vol. 21. - P. 293-329.
7. Rodionov E.D., Slavskii V.V., Chibrikova L.N. Locally conformally homogeneous pseudo-Riemannian spaces // Siberian Advances in Mathematics. - 2007. - Vol. 17. - P. 186-212.
8. Cordero L.A., Parker P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups // Rend. Mat. - 1997. - Vol. 17. - P. 129-155.

Downloads

Published

2019-12-29

How to Cite

On three-dimensional locally homogeneous manifolds with vectorial torsion and zero curvature tensor. (2019). Труды семинара по геометрии и математическому моделированию, 5, 5-10. http://new.journal.asu.ru/psgmm/article/view/7233