Тандемные дупликации генов, эуполиплоидия и вторичная диплоидизация – генетические механизмы видообразования и прогрессивной эволюции в мире растений

Авторы

DOI:

https://doi.org/10.14258/turczaninowia.25.4.12

Ключевые слова:

видообразование, геном, дисплоидия, кариотип, мезополиплоид, палеополиплоид, полиплоидия, эволюция растений, WGD

Аннотация

В статье рассмотрены генетические механизмы видообразования у растений. Показано значение межвидовой гибридизации и полиплоидии (полногеномной дупликации, WGD) как основных для растений механизмов видообразования. Рассматриваются три пути преобразований гибридного генома, связанные с видообразованием. В первом варианте плоидность потомства в сравнении с плоидностью родителей не меняется, геном гибридной линии стабилизируется посредством возвратных скрещиваний и интрогрессии без полиплоидизации. Во втором варианте геном гибрида полиплоидизируется, первоначально нестабильный геном неополиплоида постепенно переходит в стабильное состояние эуполиплоида с сохранением полиплоидного числа хромосом, но с диплоидным типом конъюгации хромосом в мейозе. Это широко распространенный и быстрый механизм видо- и родообразования у высших растений, который обеспечил морфологическую и генетическую обособленность и адаптивность не менее 15 % современных видов высших растений, но это путь, который обычно не приводит к ароморфозам, это видообразование на уже достигнутом уровне сложности. Третий путь видообразования реализуется посредством дисплоидии и вторичной диплоидизации генома. В этом случае неополиплоид претерпевает значительные геномные перестройки и утрачивает большую часть дуплицированных копий генов, число хромосом его радикально уменьшается. У разных особей вида, вставшего на путь стохастического фракционирования генома и дисплоидии, исходная генетическая избыточность разных компонентов генома, мультиплицированных после WGD, трансформируется непредсказуемо своеобразно, что приводит к радикальному увеличению внутривидового геномного и эпигенетического полиморфизма и дает богатый материал для естественного отбора. Также показано, что у эуполиплоидов и палеополиплоидов значительную роль в наследуемых адаптациях к условиям среды и в анатомо-морфологических новациях играют сегментные и тандемные дупликации генов, не связанные с WGD. Некоторые из палеополиплоидов, оказавшиеся эволюционно прогрессивными морфотипами, обладатели ароморфозов с диплоидизированными геномами, дают начало новым филогенетическим ветвям, новым надродовым таксонам. В статье предлагается выделить роды с уникальным двухромосомным геномом Zingeria и Colpodium (x =2; 2n = 4, 8, 12) в подтрибу ZingeriinaeRodionov, subtrib. nov. – Тип: Zingeria P. A. Smirn. Кроме того, объединение в одну подтрибу HelictochloinaeRöser et Tkach родов Helictochloa и Molineriella кажется нам необоснованным с геномной точки зрения, поскольку фундаментальным различием между этими двумя родами является то, виды Molineriella несут необычный 4-хромосомный геном, в то время как видообразование в роде Helictochloa (x = 7; 2n = 14–154) идет через перебор разных сочетаний 7-хромосомных субгеномов, обозначаемых буквами E, L, B, C, M, V, G, U. Поэтому мы считаем необходимым выделить виды этого рода в отдельную подтрибу MolineriellinaeRodionov, subtrib. nov. – Type: Molineriella Rouy.

Скачивания

Данные по скачиваниям пока не доступны.

Библиографические ссылки

Adamec L., Matušíková I., Pavlovič A. 2021. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Ann. Bot. 128(3): 241–259. DOI: 10.1093/aob/mcab071
Ain Q., Schmeer C., Wengerodt D., Witte O. W., Kretz A. 2020. Extrachromosomal circular DNA: current knowledge and implications for CNS aging and neurodegeneration. Int. J. Molec. Sci. 21(7), 2477: 1-29. DOI: 10.3390/ijms21072477
Ammal L. S., Bhavanandan K. V. 1991. Cytological studies on the genus Asplenium Linn. Indian Fern J. 8: 69–73.
Amosova A. V., Zoshchuk S. A., Rodionov A. V., Ghukasyan L., Samatadze T. E., Punina E. O., Loskutov I. G., Yurkevich O. Y., Muravenko O. V. 2019. Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae). BMC Genet. 20(1): 1–16. DOI: 10.1186/s12863-019-0792-2
Anderson E. 1968. Introgressive hybridization. New York, London: Hafner Publ. Comp. 109 pp.
Arendsee Z. W., Li L., Wurtele E. S. 2014. Coming of age: orphan genes in plants. Trends Plant Sci. 19(11): 698–708. DOI: 10.1016/j.tplants.2014.07.003
Badaev N. S., Badaeva E. D., Bolsheva N. L., Maximov N. G., Zelenin A. V. 1985. Cytogenetic analysis of forms produced by crossing hexaploid Triticale with common wheat. Theor. Appl. Genet. 70(5): 536–541. DOI: 10.1007/BF00305987
Badaeva E. D., Amosova A. V., Goncharov N. P., Macas J., Ruban A. S., Grechishnikova I. V., Zoshchuk A., Houben A. 2015. A set of citogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet. Genome Res. 146(1):71–79. DOI: 10.1159/000433458
Badaeva E. D., Shelukhina, O. Y., Diederichsen A., Loskutov I. G., Pukhalskiy V. A. 2010a. Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species. Genome 53: 125–137. DOI: 10.1139/G09-089
Badaeva E. D., Shelukhina O. Y., Goryunova S. V., Loskutov I. G., Pukhalskiy V. A. 2010b. Phylogenetic relationships of tetraploid AB-genome Avena species evaluated by means of cytogenetic (C-banding and FISH) and RAPD analyses. J. Bot. Article ID 742307: 1–13. DOI: 10.1155/2010/742307
Banks J. A., Nishiyama T., Hasebe M., Bowman J. L., Gribskov M., De Pamphilis C. et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032): 960–963. DOI: 10.1126/science.1203810
Barber W. T., Zhang W., Win H., Varala K. K., Dorweiler J. E., Hudson M. E., Moose S. P. 2012. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl Acad. Sci. 109(26): 10444–10449. DOI: 10.1073/pnas.1202073109
Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210(2): 391–398. URL: https://www.jstor.org/stable/newphytologist.210.2.391
Barkworth M. E. 1992. Taxonomy of the Triticeae: a historical perspective. Hereditas 116: 1–14. DOI: 10.1111/j.1601-5223.1992.tb00792.x
Baum B. R., Estes J. R., Gupta P. K. 1987. Assessment of the genomic system of classification in the Triticeae. Amer. J. Bot. 74(9): 1388–1395. DOI: 10.1002/j.1537-2197.1987.tb08753.x
Bayer P. E., Scheben A., Golicz A. A., Yuan Y., Faure S., Lee H., et al. 2021. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnology J. 19(12): 2488–2500. DOI: 10.1111/pbi.13674
Bent A. F., Mackey D. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45: 399–436. DOI: 10.1146/annurev.phyto.45.062806.094427
Benton M. J., Wilf P., Sauquet H. 2022. The Angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytologist 233: 2017–2035. DOI: 10.1111/nph.17822
Bernhardt N. 2015. Taxonomic treatments of Triticeae and the wheat genus Triticum. In: M. Molnár-Láng, C. Ceoloni, J. Doležel (eds.) Alien Introgression in Wheat. Heidelberg e.a.: Springer Cham. Pp. 1–19. DOI: 10.1007/978-3-319-23494-6_1
Bischler H., Boisselier‐Dubayle M. C. 1993. Variation in a polyploid, dioicous liverwort, Marchantia globosa. Amer. J. Bot. 80(8): 953–958. DOI: 10.1002/j.1537-2197.1993.tb15317.x
Blanc G., Wolfe K. H. 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. The Plant Cell 16(7): 1679–1691. DOI: 10.1105/tpc.021410
Bowman J. L., Kohchi T., Yamato K. T., Jenkins J., Shu S., Ishizaki K., et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2): 287–304. DOI: 10.1016/j.cell.2017.09.030
Brochmann C., Brysting A. K., Alsos I. G., Borgen L., Grundt H. H., Scheen A. C., Elven R. 2004. Polyploidy in arctic plants. Biol. J. Lin. Soc. 82(4): 521–536. DOI: 10.1111/j.1095-8312.2004.00337.x
Buggs R. J., Chamala S., Wu W., Tate J. A., Schnable P. S., Soltis D. E., Soltis P. S., Barbazuk W. B. 2012. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr. Biol. 22(3): 248–252. DOI: 10.1016/j.cub.2011.12.027
Busche M., Pucker B., Viehöver P., Weisshaar B., Stracke R. 2020. Genome sequencing of Musa acuminata Dwarf Cavendish reveals a duplication of a large segment of chromosome 2. G3: Genes, Genomes, Genetics 10(1): 37–42. DOI: 10.1534/g3.119.400847
Carta A., Bedini G., Peruzzi L. 2020. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytologist 228(3): 1097–1106. DOI: 10.1111/nph.16668
Casanova M. T. 2015. Chromosome numbers in Australian charophytes (Characeae, Charophyceae). Phycologia 54(2): 149–160. DOI: 10.2216/14-79.1
Catalán P., Müller J., Hasterok R., Jenkins G., Mur L. A., Langdon T., Betekhtin A., Siwinska D., Pimentel M., López-Alvarez D. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109(2): 385–405. DOI: 10.1093/aob/mcr294
Chalhoub B., Denoeud F., Liu S., Parkin I. A., Tang H., Wang X., et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199): 950–953. DOI: 10.1126/science.1253435
Chen X., Rechavi O. 2022. Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell. Biol. 23: 185–203. DOI: 10.1038/s41580-021-00425-y
Chester M., Leitch A. R., Soltis P. S., Soltis D. E. 2010. Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1(2): 166–192. DOI: 10.3390/genes1020166
Clausen J. 1961. Introgression facilitated by apomixis in polyploid Poas. Euphytica 10(1): 87–94. DOI: 10.1007/BF00037208
D’Hont A., Denoeud F., Aury J. M., Baurens F. C., Carreel F., Garsmeur O., et al. 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410): 213–217. DOI: 10.1038/nature11241
Darlington C.D. 1937. Recent Advances in Cytology. Philadelphia: Blakiston. 671 pp.
Das A. K., Choudhary M., Kumar P., Karjagi C. G., Yathish K. R., Kumar R., et al. 2021. Heterosis in Genomic Era: Advances in the molecular understanding and techniques for rapid exploitation. Critical Rev. Plant Sci. 40(3): 218–242. DOI: 10.1080/07352689.2021.1923185
Dauphin B., Grant J. R., Farrar D. R., Rothfels C. J. 2018. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions. Mol. Phylogenet. Evol. 120: 342–353. DOI: 10.1016/j.ympev.2017.11.025
Dawes T. N., Villarreal A. J. C., Szövényi P., Bisang I., Li F. W., Hauser D. A., Quandt D., Cargill D. C., Forres L. L. 2020. Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Syst. Evol. 306(2): 1–10. DOI: 10.1007/s00606-020-01676-6
Derelle E., Ferraz C., Rombauts S., Rouzé P., Worden A. Z., Robbens S., et al. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl Acad. Sci. 103(31): 11647–11652. DOI: 10.1073/pnas.0604795103
Devesa J. A., Ruiz T., Ortega A., Carrasco J. P., Viera M. C., Torno R., Pastor J. 1990a. Contribución al conocimiento cariológico de las Poaceae en Extremadura (Espana) – I. Bol. Soc. Brot. Sér. 2. 63: 29–66.
Devesa J. A., Ruiz T., Torno R., Muñoz A., Viera M. C., Carrasco J. P., Ortega A., Pastor J. 1990b. Contribución al conocimiento cariológico de las Poaceae en Extremadura – II. Bol. Soc. Brot. Sér. 2. 63: 153–205.
Dewey D. R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: J. P. Gustafson (ed.). Gene manipulation in plant improvement. Boston, MA: Springer. Pp. 209–279.
Dierschke T., Mandáková T., Lysak M. A., Mummenhoff K. 2009. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann. Bot. 104(4): 681–688. DOI: 10.1093/aob/mcp161
Diosdado J. C., Pastor J. E. 1996. Consideraciones citotaxonómicas del género Ranunculus L. (Ranunculaceae) en la Península Ibérica. Anales Jard. Bot. Madrid 54: 166–178.
Divashuk M. G., Khuat T. M. L., Kroupin P. Y., Kirov I. V., Romanov D. V., Kiseleva A. V., Khrustaleva L. I., Alexeev D. G., Zelenin A. V., Klimushina M. V., Razumova O. V., Karlov G. I. 2016. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PloS One. 11(4): e0154241. DOI: 10.1371/journal.pone.0154241
Dobzhansky T. 1937. Genetics and the Origin of Species. New York: Columbia University Press. 364 pp.
Dobzhansky T. 1970. Genetics of the Evolutionary Process. New York, London: Columbia University Press. 505 pp.
Dodsworth S., Chase M. W., Leitch A. R. 2016. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 180:1-5. DOI: 10.1111/boj.12357
Edet O. U., Gorafi Y. S., Nasuda S., Tsujimoto H. 2018. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci. Rep. 8: 16397. DOI: 10.1038/s41598-018-34811-y
Eirín-López J. M., Rebordinos L., Rooney A. P., Rozas J. 2012. The birth-and-death evolution of multigene families revisited. In: M. A. Garrido-Ramos (ed.): Repetitive DNA. Genome Dynamics. Vol. 7. Basel: Karger. Pp. 170–196. DOI: 10.1159/000337119
Evtushenko E. V., Lipikhina Y. A., Stepochkin P. I., Vershinin A. V. 2019. Cytogenetic and molecular characteristics of rye genome in octoploid Triticale (× Triticosecale Wittmack). Comp. Cytogenet. 13(4): 423–434. DOI: 10.3897/CompCytogen.v13i4.39576
Fambrini M., Usai G., Vangelisti A., Mascagni F., Pugliesi C. 2020. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 58(12): e23399. DOI: 10.1002/dvg.23399
Favarger C. 1961. Sur l’emploi des nombres chromosomiques en géographie botanique historique. Ber. Geobot. Inst. Rübel. 32: 119–146.
Faverger C. 1984. Cytogeography and biosystematics. In: W. F. Grant (ed.) Plant Biosystematics. Toronto e. a.: Academic Press. Pp. 453–476.
Felix W. J. P., Felix L. P., Melo N. F., Dutilh J. H. A., Carvalho R. 2011. Cytogenetics of Amaryllidaceae species: heterochromatin evolution in different ploidy levels. Plant Syst. Evol. 292(3): 215–221. DOI: 10.1007/s00606-011-0418-2
Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4): 1531–1545. DOI: 10.1093/genetics/151.4.1531
Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60: 433–453. DOI: 10.1146/annurev.arplant.043008.092122
Freeling M., Scanlon M. J., Fowler J. E. 2015. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35: 110–118. DOI: 10.1016/j.gde.2015.11.002
Freeling M., Woodhouse M. R., Subramaniam S., Turco G., Lisch D., Schnable J. C. 2012. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant. Biol. 15(2): 131–139. DOI: 10.1016/j.pbi.2012.01.015
Fritsch R. 1991. Index of bryophyte chromosome counts. Berlin, Stutgart: J. Cramer, 364 pp.
Gaeta R. T., Pires J. C., Iniguez-Luy F., Leon E., Osborn T. C. 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell 19(11): 3403–3417. DOI: 10.1105/tpc.107.054346
Gaines T. A., Patterson E. L., Neve P. 2019. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytologist 223(4): 1770–1775. DOI: 10.1111/nph.15858
Gnutikov A. A., Nosov N. N., Loskutov I. G., Machs E. M., Blinova E. V., Probatova N. S., Langdon T., Rodionov A. V. 2022. New insights into the genomic structure of the oats (Avena L., Poaceae): Intragenomic polymorphism of ITS1 sequences of rare endemic species Avena bruhnsiana Gruner and its relationship to other species with C genomes. Euphytica 218(1): 1–9. DOI: 10.1007/s10681-021-02956-z
Goffová I., Fajkus J. 2021. The rDNA loci – intersections of replication, transcription, and repair pathways. Int. J. Mol. Sci. 22(3): 1302. DOI: 10.3390/ijms22031302
Goldblatt P., Takei M. 1997. Chromosome cytology of Iridaceae-patterns of variation, determination of ancestral base numbers, and modes of karyotype change. Ann. Missouri Bot. Gard. 84: 285–304. DOI: 10.2307/2400005
Goncharov N. P. 2011. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 295: 1–11. DOI: 10.1007/s00606-011-0480-9
Grant D., Cregan P., Shoemaker R. C. 2000. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl Acad. Sci. 97(8): 4168–4173. DOI: 10.1073/pnas.07043059
Grant V. 1971. Plant Speciation. New York, London: Columbia University Press. 435 pp.
Graphodatsky A. S., Trifonov V. A., Stanyon R. 2011. The genome diversity and karyotype evolution of mammals. Molec. Cytogenet. 4(1): 1–16. DOI: 10.1186/1755-8166-4-22
Гребельный С. Д. Много ли на свете клональных видов. Ч. 2. Клонирование в природе, его роль в формировании разнообразия фауны и флоры // Зоология беспозвоночных, 2006. Т. 3, № 1. С. 77–109.
Гребельный С. Д. Утрата аллельного разнообразия у видов гибридного происхождения // Экологическая генетика. 2009. Т. 7, № 2. С. 47–49.
Gruzdev E. V., Kadnikov V. V., Beletsky A. V., Kochieva E. Z., Mardanov A. V., Skryabin K. G., Ravin N. V. 2019. Plastid genomes of carnivorous plants Drosera rotundifolia and Nepenthes × ventrata reveal evolutionary patterns resembling those observed in parasitic plants. Int. J. Mol. Sci. 20(17): 4107. DOI: 10.3390/ijms20174107
Guerra M. 2008. Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet. Genome Res. 120(3–4): 339–350. DOI: 10.1159/000121083
Gui Y. J., Zhou Y., Wang Y., Wang S., Wang S. Y., Hu Y., Bo S. P., Chen H., Zhou C. P., Ma N. X., Zhang T. Z., Fan L. J. 2010. Insights into the bamboo genome: syntenic relationships to rice and sorghum. J. Integr. Plant Biol. 52(11): 1008–1015. DOI: 10.1111/j.1744-7909.2010.00965.x
Guo C., Ma P. F., Yang G. Q., Ye X. Y., Guo Y., Liu J. X., Liu Y. L., Eaton D. A. R., Guo Z. H., Li D. Z. 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70(4): 756–773. DOI: 10.1093/sysbio/syaa076
Guo J., Ren Y., Tang Z., Shi W., Zhou M. 2019a. Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ, 7: e8190. DOI: 10.7717/peerj.8190
Guo H., Jiao Y., Tan X., Wang X., Huang X., Jin H., Paterson A. H. 2019b. Gene duplication and genetic innovation in cereal genomes. Genome Res. 29(2): 261–269. DOI:10.1101/gr.237511.118
Guo T., Yang J., Li D., Sun K., Luo L., Xiao W., Wang J., Liu Y., Wang S., Wang H., Chen Z. 2019c. Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.). Mol. Breeding 39(6): 1–16. DOI: 10.1007/s11032-019-0993-4
Ha M., Lu J., Tian L., Ramachandran V., Kasschau K. D., Chapman E. J., Carrington J. C., Chen X., Wang X. J., Chen Z. J. 2009. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl Acad. Sci. 106(42): 17835–17840. DOI: 10.1073/pnas.0907003106
Hastings P. J., Rosenberg S. M. 2002. In pursuit of a molecular mechanism for adaptive gene amplification. DNA Repair. 1(2): 111–123. DOI: 10.1016/S1568-7864(01)00011-8
Haufler C. H. 2014. Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Amer. J. Bot. 101(12): 2036–2042. DOI: 10.3732/ajb.1400317
Hénault M. 2021. The challenges of predicting transposable element activity in hybrids. Curr. Genet. 67(4): 567–572. DOI: 10.1007/s00294-021-01169-0
Herben T., Suda J., Klimešová J. 2017. Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Ann. Bot. 120(2): 341–349. DOI: 10.1093/aob/mcx009
Hilu K. W. 2004. Phylogenetics and chromosomal evolution in the Poaceae (grasses). Australian J. Bot. 52: 13–22. DOI: 10.1071/BT03103
Hizume M., Kondo K. 1992. Fluorescent chromosome banding in five taxa of Pseudotsuga, Pinaceae. Kromosomo 66: 2257–2268.
Huang Y., Chen J., Dong C., Sosa D., Xia S., Ouyang Y., Fan C., Li D., Mortola E., Long M., Bergelson J. 2022. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection. The Plant Cell 34(2): 802–817. DOI: 10.1093/plcell/koab291
Huber W. 1985. Neue chromosomenzahlen bei Ranunculus plantagineus All. (Artengruppe des R. pyrenaeus L.). Bot. Helv. 95: 19–24.
Hunziker J. H., Wulff A. F., Soderstrom T. R. 1982. Chromosome studies on the Bambusoideae (Gramineae). Brittonia 34(1): 30–35. DOI: 10.2307/2806397
Hunziker J. H., Wulff A. F., Wulf A., Soderstrom T. R. 1989. Chromosome studies on Anomochloa and other Bambusoideae (Gramineae). Darwiniana 29(1/4): 41–45. URL: http://www.jstor.org/stable/23218910
Ibarra-Laclette E., Lyons E., Hernández-Guzmán G., Pérez-Torres C. A., Carretero-Paulet L., Chang T. H., et al. 2013. Architecture and evolution of a minute plant genome. Nature 498(7452): 94–98. DOI: 10.1038/nature12132
IWGSC 2018 - International Wheat Genome Sequencing Consortium. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403): eaar7191. DOI: 10.1126/science.aar719
Jangam D., Feschotte C., Betrán E. 2017. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33(11): 817–831. DOI: 10.1016/j.tig.2017.07.011
Jermy A. C., Jones K., Colden C. 1967. Cytomorphological variation in Selaginella. Bot. J. Linn. Soc. 60(382): 147–158.
Jiang N., Feschotte C., Zhang X., Wessler S. R. 2004. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr. Opin. Plant Biol. 7(2): 115–119. DOI: 10.1016/j.pbi.2004.01.004
Jiao C., Sørensen I., Sun X., Sun H., Behar H., Alseekh S., et al. 2020. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181(5): 1097–1111.e12. DOI: 10.1016/j.cell.2020.04.019
Johnston S. A., Den Nijs T. P. M., Peloquin S. J., Hanneman R. E. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theoret. Appl. Genet. 57: 5–9. DOI: 10.1007/BF00276002
Камелин Р. В. Лекции по систематике растений. Главы теоретической систематики растений. Барнаул: Азбука, 2004. 226 с.
Камелин Р. В. Особенности видообразования у цветковых растений // Труды Зоологического института РАН, 2009. Т. 313, прил.1. С. 141–149.
Khan I. U., Rono J. K., Zhang B. Q., Liu X. S., Wang M. Q., Wang L. L., Wu X. C., Chen X., Cao H. W., Yang Z. M. 2019. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicology and Environmental Safety 175: 8–18. DOI: 10.1016/j.ecoenv.2019.03.040
Kihara H. 1930. Genomanalyse bei Triticum und Aegilops. Cytologia 1: 263–270.
Kihara H., Ono T. 1926. Chromosomenzahlen und systematische gruppierung der Rumex-arten. Zeitschr. f. Zellforsch. mikr. Anat. 4(3): 475–481.
Kim E. S., Bolsheva N. L., Samatadze T. E., Nosov N. N., Nosova I. V., Zelenin A. V., Punina E. O., Muravenko O. V., Rodionov A. V. 2009. The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution. Russ. J. Genet. 45: 1329–1337. DOI: 10.1134/S1022795409110076
Ким Е. С., Носов Н. Н., Доброрадова М. А., Пунина Е. О., Тюпа Н. Б., Родионов А. В. Близость Catabrosella araratica (2n = 6x = 42) к злакам с двухромосомными геномами Zingeria biebersteiniana и Colpodium versicolor (2n = 2x = 4) –род Nevskia Tzvel. Действительно существует? // А. В. Родионов, В. С. Шнеер (ред.). Хромосомы и эволюция: Симпозиум памяти Г. А. Левитского (1878–1942). СПб.: БИН РАН, 2008. С. 58–59.
Klatt S., Schinkel C. C., Kirchheimer B., Dullinger S., Hörandl E. 2018. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). Ann. Bot. 121(7): 1287–1298. DOI: 10.1093/aob/mcy017
Комаров В. Л. Учение о виде у растений. Страница из истории биологии. М.; Л.: Изд-во АН СССР, 1940. 212 с.
Kono T. J., Brohammer A. B., McGaugh S. E., Hirsch C. N. 2018. Tandem duplicate genes in maize are abundant and date to two distinct periods of time. G3: Genes, Genomes, Genetics 8(9): 3049–3058. DOI: 10.1534/g3.118.200580
Koo D. H., Molin W. T., Saski C. A., Jiang J., Putta K., Jugulam M., Friebe B., Gill B. S. 2018. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl Acad. Sci. 115(13): 3332–3337. DOI: 10.1073/pnas.1719354115
Kotseruba V., Gernand D., Meister A., Houben A. 2003. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2 n = 8). Genome 46(1): 156–163. DOI: 10.1139/g02-104
Kuzmin E., Taylor J. S., Boone C. 2021. Retention of duplicated genes in evolution. Trends Genet. 38(1): 59–72. DOI: 10.1016/j.tig.2021.06.016
Kyriakidou M., Tai H. H., Anglin N. L., Ellis D., Strömvik M. V. 2018. Current strategies of polyploid plant genome sequence assembly. Front. Plant Sci. 9: 1660. DOI: 10.3389/fpls.2018.01660
Lallemand T., Leduc M., Landès C., Rizzon C., Lerat E. 2020. An overview of duplicated gene detection methods: Why the duplication mechanism has to be accounted for in their choice. Genes 11(9): 1046. DOI: 10.3390/genes11091046
Lan T., Renner T., Ibarra-Laclette E., Farr K. M., Chang T. H., Cervantes-Pérez S. A., et al. 2017. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc. Natl Acad. Sci. 114(22): E4435–E4441. DOI: 10.1073/pnas.1702072114
Landis J. B., Soltis D. E., Li Z., Marx H. E., Barker M. S., Tank D. C., Soltis P. S. 2018. Impact of whole‐genome duplication events on diversification rates in angiosperms. Amer. J. Bot. 105(3): 348–363. DOI: 10.1002/ajb2.1060
Langham R. J., Walsh J., Dunn M., Ko C., Goff S. A., Freeling M. 2004. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166(2): 935–945. DOI: 10.1093/genetics/166.2.935
Laurie D. A., Bennett M. D. 1989. The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32: 953–961. DOI: 10.1139/g89-537
Levan A., Levan G. 1978. Have double minutes functioning centromeres? Hereditas 88(1): 81–92. DOI: 10.1111/j.1601-5223.1978.tb01606.x
Levan G., Mandahl N., Bengtsson B. O., Levan A. 1977. Experimental elimination and recovery of double minute chromosomes in malignant cell populations. Hereditas 86(1): 75–90. DOI: 10.1111/j.1601-5223.1977.tb01214.x
Levin D. A., Wilson A. C. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc. Natl Acad. Sci. 73(6): 2086–2090. DOI: 10.1073/pnas.73.6.2086
Levy A. A., Feldman M. 2022. Evolution and origin of bread wheat. The Plant Cell 34(7): 2549–2567. DOI: 10.1093/plcell/koac130
Li L.-c. 1994. A cytotaxonomical study on Pseudolarix amabilis. Acta Bot. Yunnan 16(3): 248–254.
Li Y., Xiao J., Wu J., Duan J., Liu Y., Ye X., Zhang X., Guo X., Gu Y., Zhang L., Jia J., Kong X. 2012. A tandem segmental duplication (TSD) in green revolution gene Rht‐D1b region underlies plant height variation. New Phytologist 196(1): 282–291. DOI: 10.1111/j.1469-8137.2012.04243.x
Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z. 2021a. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. The Plant J. 105(4): 978-993. DOI: 10.1111/tpj.15081
Li W., Chen Y., Ye M., Lu H., Wang D., Chen Q. 2020. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum. BMC Evol. Biol. 20(1): 142: 1–14. DOI: 10.1186/s12862-020-01710-8
Li Z., McKibben M. T., Finch G. S., Blischak P. D., Sutherland B. L., Barker M. S. 2021b. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72: 387–410. DOI: 10.1146/annurev-arplant-050718-100344
Liang Z., Schnable J. C. 2018. Functional divergence between subgenomes and gene pairs after whole genome duplications. Molec. Plant 11(3): 388–397. DOI: 10.1016/j.molp.2017.12.010
Lien S., Koop B. F., Sandve S. R., Miller J. R., Kent M. P., Nome T., et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602): 200–205. DOI: 10.1038/nature17164
Lim K. Y., Soltis D. E., Soltis P. S., Tate J., Matyasek R., Srubarova H., Kovarik A., Pires J. C., Xiong Z., Leitch A. R. 2008. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PloS One 3(10): e3353. DOI: 10.1371/journal.pone.0003353
Liu H., Wang X., Wang G., Cui P., Wu S., Ai C., et al. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants 7: 748–756. DOI: 10.1038/s41477-021-00933-x
Liu Q. L., Liu L., Ge S., Fu L. P., Bai S. Q., Lv X. Wang Q. K., Chen W., Wang F. Y., Wang L. H., Yan X. B., Liu B. R. 2022a. Endo‐allopolyploidy of autopolyploids and recurrent hybridization – A possible mechanism to explain the unresolved Y‐genome donor in polyploid Elymus species (Triticeae: Poaceae). J. Syst. Evol. 60(2): 344–360. DOI: 10.1111/jse.12659.
Liu Y., Wang S., Li L., Yang T., Dong S., Wei T. et al. 2022b. The Cycas genome and the early evolution of seed plants. Nature Plants 8: 389–401. DOI: 10.1038/s41477-022-01129-7
Lopes I., Altab G., Raina P., De Magalhães J. P. 2021. Gene size matters: an analysis of gene length in the human genome. Front. Genet. 12: 559998. DOI: 10.3389/fgene.2021.559998
Löve A. 1982. Genomic evolution in the wheatgrasses. Biol. Zentralbl. 101: 191–212.
Löve A. 1984. Conspectus of the Triticea. Feddes Repertorium. 95: 425–551.
Löve A., Löve D. 1976. IOPB chromosome number reports LIII. Taxon 25: 483–500.
Ma P. F., Liu Y. L., Jin G. H., Liu J. X., Wu H., He J., Guo Z. H., Li D. Z. 2021. The Pharus latifolius genome bridges the gap of early grass evolution. The Plant Cell 33(4): 846–864. DOI: 10.1093/plcell/koab015
Mandáková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M. A. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. The Plant Cell 22(7): 2277–2290. DOI: 10.1105/tpc.110.074526
Mandáková T., Li Z., Barker M. S., Lysak M. A. 2017. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J. 91: 3–21 DOI: 10.1111/tpj.13553
Mandáková T., Lysak M. A. 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42: 55–65. DOI: 10.1016/j.pbi.2018.03.001
Mayrose I., Zhan S. H., Rothfels C. J., Arrigo N., Barker M. S., Rieseberg L. H., Otto S. P. 2015. Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). New Phytologist 206(1): 27–35. URL: https://www.jstor.org/stable/newphytologist.206.1.27
Mayrose I., Zhan S. H., Rothfels C. J., Magnuson-Ford K., Barker M. S., Rieseberg L. H., Otto S. P. 2011. Recently formed polyploid plants diversify at lower rates. Science 333(6047): 1257–1257. DOI: 10.1126/science.1207205
McClintock B. 1984.The significance of responses of the genome to challenge. Science 226: 792–801. DOI: 10.1126/science.15739260
Melo, de N. F., Benko-Iseppon A. M., Guerra M., Menezes N. L. 1997. The cytogenetics and cytotaxonomy of Velloziaceae. Plant Syst. Evol. 204: 257–273. URL: https://www.jstor.org/stable/23643121
Melters D. P., Bradnam K. R., Young H. A., Telis N., May M. R., Ruby J. G., et al. 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14(1): 1–20. DOI: 10.1186/gb-2013-14-1-r10
Meudt H. M., Albach D. C., Tanentzap A. J., Igea J., Newmarch S. C., Brandt A. J., Lee W. G., Tate J. A. 2021. Polyploidy on islands: its emergence and importance for diversification. Front. Plant Sci. 12: 637214. DOI: 10.3389/fpls.2021.637214
Meyers B. C., Kozik A., Griego A., Kuang H., Michelmore R. W. 2003. Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. The Plant Cell 15(4): 809–834. DOI: 10.1105/tpc.009308
Moore G. A., Collins G. B. 1983. Morphological and cytological characterization of nullihaploids and nullisomics of Nicotiana tabacum L. Tobacco Science. 27: 10–13.
Müntzing A. 1936.The evolutionary significance of autopolyploidy. Hereditas 21: 263–378.
Murat F., Armero A., Pont C., Klopp C., Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genet. 49(4): 490-496. DOI: 10.1038/ng.3813
Murat F., Zhang R., Guizard S., Flores R., Armero A., Pont C., Steinbach D., Quesneville H., Cooke R., Salse J 2014. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol. Evol. 6(1): 12–33. DOI: 10.1093/gbe/evt200
Muravenko O., Fedotov A., Punina E., Fedorova L., Grif V. G., Zelenin A. V. 1998. Comparison of BrdU–Hoechst–Giemsa chromosome banding patterns of A1 and (AD)2 genomes of cotton. Genome 41: 616–625. DOI: 10.1139/G98-049
Murray B. G. 2013. Karyotype variation and evolution in Gymnosperms. In: I. J. Leitch (ed.). Plant Genome Diversity. Vol. 2. Physical Structure, Behavior and Evolution of Plant Genomes. Wien: Springer-Verlag. Pp. 231–243. DOI: 10.1007/978-3-7091-1160-4_14
Nakazato T., Barker M. S., Rieseberg L. H., Gastony G. J. 2008. Evolution of the nuclear genome of ferns and lycophytes. In: T. A. Ranker, C. H. Haufler (eds.). Biology and evolution of ferns and lycophytes. Oxford: Cambridge University Press. Pp. 175–198. DOI: 10.1017/CBO9780511541827.008
Nawaschin M. 1927. Ueber die Veränderung von Zahl and Form der Chromosomen infolge der Hybridisation. Zeitschr. f. Zellforsch. mikr. Anat. 6: 195–233.
Nelson J. O., Watase G. J., Warsinger-Pepe N., Yamashita Y. M. 2019. Mechanisms of rDNA copy number maintenance. Trends Genet. 35(10): 734–742. DOI: 10.1016/j.tig.2019.07.006
Nevill P. G., Howell K. A., Cross A. T., Williams A. V., Zhong X., Tonti-Filippini J., Boykin L. M., Dixon K. W., Small I. 2019. Plastome-wide rearrangements and gene losses in carnivorous Droseraceae. Genome Biol. Evol. 11(2): 472–485. DOI: 10.1093/gbe/evz005
Ng D. W.-K., Lu J., Chen Z. J. 2012. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant Biol. 15:154–161. DOI: 10.1016/j.pbi.2012.01.007
Nishiyama T., Sakayama H., De Vries J., Buschmann H., Saint-Marcoux D., Ullrich K. K., et al. 2018. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell. 174(2): 448–464. DOI: 10.1016/j.cell.2018.06.033
Norrmann G. A., Quarín C. L., Killeen T. J. 1994. Chromosome numbers in Bolivian grasses (Gramineae). Ann. Missouri Bot. Gard. 81(4): 768–774. DOI: 10.2307/2399921
Орлова Л. В., Егоров А. А. К систематике и географическому распространению ели финской (Picea fennica (Regel) Kom., Pinaceae) // Новости сист. высш. раст., 2010. Вып. 42. С. 5–23.
Palfalvi G., Hackl T., Terhoeven N., Shibata T. F., Nishiyama T., Ankenbrand M., et al. 2020. Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 30(12): 2312–2320. DOI: 10.1016/j.cub.2020.04.051
Panchy N., Lehti-Shiu M., Shiu S. H. 2016. Evolution of gene duplication in plants. Plant Physiol. 171(4): 2294–2316. DOI: 10.1104/pp.16.00523
Pécrix Y., Rallo G., Folzer H., Cigna M., Gudin S., Le Bris M. 2011. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J. Exp. Bot. 62(10): 3587–3597. DOI:10.1093/jxb/err052
Погосян А. И., Наринян С. Г., Восканян В. Е. К карио-географическому изучению флоры массива Арагац // Биол. журн. Армении, 1972. Т. 25, № 9. С. 15–22.
Prentis P. J., Wilson J. R., Dormontt E. E., Richardson D. M., Lowe A. J. 2008. Adaptive evolution in invasive species. Trends Plant Sci. 13(6): 288–294. DOI: 10.1016/j.tplants.2008.03.004
Пробатова Н. С. Хромосомные числа в семействе Poaceae и их значение для систематики, филогении и фитогеографии (на примере злаков Дальнего Востока России) // Комаровские чтения. Вып. 55. Владивосток, 2007. С. 9–103.
Proskauer J. 1957. Studies on Anthocerotales V. Phytomorphology 7: 113–135.
Пунина Е. О., Мачс Э. М., Ким Е. С., Мякошина Ю. А., Родионов А. В. Кариосистематика и молекулярная филогения представителей семейства Trilliaceae // Биологические мембраны, 2005. Т. 22, № 3. С. 247–255.
Qiao X., Yin H., Li L., Wang R., Wu J., Wu J., Zhang S. 2018. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front. Plant Sci. 9: 161. DOI: 10.3389/fpls.2018.00161
Qiao X., Zhang S., Paterson A. H. 2022. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Computational and Structural Biotechnology J. 20: 3248–3256. DOI: 10.1016/j.csbj.2022.06.026
Ramsey J., Schemske D. W. 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33: 589–639. URL: https://www.jstor.org/stable/3069274
Ran J. H., Shen T. T., Wu H., Gong X., Wang X. Q. 2018. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Molec. Phylogenet. Evol. 129: 106–116. DOI: 10.1016/j.ympev.2018.08.011
Renny‐Byfield S., Wendel J. F. 2014. Doubling down on genomes: polyploidy and crop plants. Amer. J. Bot. 101(10): 1711–1725. DOI: 10.3732/ajb.1400119
Rice A., Šmarda P., Novosolov M., Drori M., Glick L., Sabath N., Meiri S., Belmaker J., Mayrose I. 2019. The global biogeography of polyploid plants. Nature Ecol. Evol. 3(2): 265–273. DOI: 10.1038/s41559-018-0787-9
Rodgers-Melnick E., Mane S. P., Dharmawardhana P., Slavov G. T., Crasta O. R., Strauss S. H., Brunner A. M., DiFazio S. P. 2012. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 22(1): 95–105. DOI: 10.1101/gr.125146.111
Родионов А. В. Межвидовая гибридизация и полиплоидия в эволюции растений // Вавиловский журнал генетики и селекции, 2013. Т. 17, № 4(2). С. 916–929.
Rodionov A. V., Amosova A. V., Belyakov E. A., Zhurbenko P. M., Mikhailova Yu. V., Punina E. O., Shneyer V. S., Loskutov I. G., Muravenko O. V. 2019. Genetic consequence of interspecial hybridization, its role in speciation and phenotypic diversity of plants. Russ. J. Genet. 55(3): 278–294. DOI: 10.1134/S1022795419030141
Rodionov A. V., Gnutikov A. A., Kotsinyan A. R., Kotseruba V. V., Nosov N. N., Punina E. O., Rayko M. P., Tyupa N. B., Kim E. S. 2017. ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae). Biol. Bull. Rev. 7: 85–102. DOI: 10.1134/S2079086417020062
Rodionov A. V., Gnutikov A. A., Nosov N. N., Machs E. M., Mikhaylova Y. V., Shneyer V. S., Punina E. O. 2020a. Intragenomic polymorphism of the ITS 1 region of 35S rRNA genes in the grasses with two-chromosome genomes: Different genome composition in closely related Zingeria species. Plants 9(12): 1647. DOI: 10.3390/plants9121647
Rodionov A. V., Gnutikov A. A., Nosov N. N., Machs E. M., Mikhaylova Y. V., Shneyer V. S., Punina E. O. 2021. Correction: Rodionov, A.V., et al. Intragenomic polymorphism of the ITS 1 region of 35S rRNA gene in the group of grasses with two-chromosome species: Different genome composition in closely related Zingeria species. Plants 2020, 9, 1647. Plants 10(3): 463. DOI: 10.3390/plants10030463
Родионов А. В., Ким Е. С., Носов Н. Н., Райко М. П., Мачс Э. М., Пунина Е. О. Молекулярно-филогенетическое исследование видов рода Colpodium sensu lato (Poeae, Poaceae) // Экологическая генетика, 2008. Т. 6, № 4. С. 34–46. DOI: 10.17816/ecogen6434-46
Родионов А. В., Ким Е. С., Пунина Е. О., Мачс Э. М., Тюпа Н. Б., Носов Н. Н. Эволюция хромосомных чисел в трибах Aveneae и Poeae по данным сравнительного исследования внутренних транскрибируемых спейсеров ITS1 и ITS2 ядерных генов 45S рРНК // Бот. журн., 2007. Т. 92, № 1. С. 57–71.
Rodionov A. V., Nosov N. N., Kim E. S., Machs E. M., Punina E. O., Probatova N. S. 2010. The origin of polyploid genomes of bluegrasses Poa L. and Gene flow between northern pacific and sub-Antarctic Islands. Russ. J. Genet. 46(12): 1407–1416. DOI: 10.1134/S1022795410120021
Родионов А. В., Шнеер В. С., Гнутиков А. А., Носов Н. Н., Пунина Е. О., Журбенко П. М., Лоскутов И. Г., Муравенко О. В. Диалектика видов: от исходного единообразия, через максимально возможное разнообразие к конечному единообразию // Бот. журн., 2020. Т. 105, № 9. С. 835–853. DOI: 10.31857/S0006813620070091
Rodionov A. V., Shneyer V. S., Punina E. O., Nosov N. N., Gnutikov A. A. 2020c. The law of homologous series in variation for systematics. Russ. J. Genet. 56(11): 1277–1287. DOI: 10.1134/S1022795420110071
Román‐Palacios C., Medina C. A., Zhan S. H., Barker M. S. 2021. Animal chromosome counts reveal a similar range of chromosome numbers but with less polyploidy in animals compared to flowering plants. J. Evol. Biol. 34(8): 1333–1339. DOI: 10.1111/jeb.13884
Rutledge S. D., Cimini D. 2016. Consequences of aneuploidy in sickness and in health. Curr. Opin. Cell. Biol. 40: 41–46. DOI: 10.1016/j.ceb.2016.02.003
Saarela J. M., Bull R. D., Paradis M. J., Ebata S. N., Peterson P. M., Soreng R. J., Paszko B. 2017. Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1). PhytoKeys 87: 1–139. DOI: 10.3897/phytokeys.87.12774
Sacerdot C., Louis A., Bon C., Berthelot C., Roest Crollius H. 2018. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19(1): 1–15. DOI: 10.1186/s13059-018-1559-1
Salse J. 2012. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr. Opin. Plant Biol. 15(2): 122–130. DOI: 10.1016/j.pbi.2012.01.001
Sanei M., Pickering R., Kumke K., Nasuda S., Houben A. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl Acad. Sci. 108(33): E498–E505. DOI: 10.1073/pnas.1103190108
Schinkel C. C., Kirchheimer B., Dellinger A. S., Klatt S., Winkler M., Dullinger S., Hörandl E. 2016. Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 8: plw064. DOI: 10.1093/aobpla/plw064
Schranz M. E., Mohammadin S., Edger P. P. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15(2): 147–153. DOI: 10.1016/j.pbi.2012.03.011
Schubert I., Lysak M. A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27(6): 207–216. DOI: 10.1016/j.tig.2011.03.004
Sears E. R. 1944. Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare. Genetics 29: 232–246. DOI: 10.1093/genetics/29.3.232
Seetharam A. S, Yu Y., Bélanger S., Clark L.G., Meyers B. C., Kellogg E. A., Hufford M. B. 2021. The Streptochaeta genome and the evolution of the grasses. Front. Plant Sci. 12: 710383. DOI: 10.3389/fpls.2021.710383
Senderowicz M., Nowak T., Rojek-Jelonek M., Bisaga M., Papp L., Weiss-Schneeweiss H., Kolano B. 2021. Descending dysploidy and bidirectional changes in genome size accompanied Crepis (Asteraceae) evolution. Genes 12(9): 1436. DOI: 10.3390/genes12091436
Senerchia N., Felber F., Parisod C. 2015. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation. Proc. R. Soc. B: Biol. Sci. 282(1804): 20142874. DOI: 10.1098/rspb.2014.2874
Shao Z. Q., Xue J. Y., Wang Q., Wang B., Chen J. Q. 2019. Revisiting the origin of plant NBS-LRR genes. Trends Plant Sci. 24(1): 9–12. DOI: 10.1016/j.tplants.2018.10.015
Shimizu N. 2021. Gene amplification and the extrachromosomal circular DNA. Genes 12(10): 1533. DOI: 10.3390/genes12101533
Simon L., Rabanal F. A., Dubos T., Oliver C., Lauber D., Poulet A., et al. 2018. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucl. Acids Res. 46(6): 3019–3033. DOI: 10.1093/nar/gky163
Simpson G. G. 1944. Tempo and Mode in Evolution. New York: Columbia Univ. Press. 237 pp.
Скапцов М. В., Смирнов С. В., Кечайкин А. А., Куцев М. Г., Ваганов А. В., Шмаков А. И. 2018. Полиморфизм относительного содержания ДНК видов Selaginella borealis и Selaginella sanguinolenta // Acta Biologica Sibirica, 2018. № 4(4). C. 116–118.
Skaptsov M. V., Vaganov A. V., Kechaykin A. A., Kutsev M. G., Smirnov S. V., Dorofeev V. I., Borodina-Grabovskaya A. E., Seregin A. P., Sinitsina T. A., Friesen N. V., Zhang X.-C., Shmakov A. I. 2020. The cytotypes variability of the complex Selaginella sanguinolenta s. l. Turczaninowia 23, 2: 5–14. DOI: 10.14258/turczaninowia.23.2.1
Šlenker M., Kantor A., Marhold K., Schmickl R., Mandáková T., Lysak M. A., Perný M., Caboňová M., Slovák M., Zozomová-Lihová J. 2021. Allele sorting as a novel approach to resolving the origin of allotetraploids using Hyb-Seq Data: A case study of the Balkan Mountain endemic Cardamine barbaraeoides. Front. Plant Sci. 12: 659275. DOI: 10.3389/fpls.2021.659275
Soares N. R., Mollinari M., Oliveira G. K.; Pereira G. S.; Vieira M. L. C. 2021. Meiosis in polyploids and implications for genetic mapping: A review. Genes 12: 1517. DOI: 10.3390/genes12101517
Sokołowska J., Fuchs H., Celiński K. 2022. Assessment of ITS2 region relevance for taxa discrimination and phylogenetic inference among Pinaceae. Plants 11: 1078. DOI: 10.3390/plants11081078
Соколовская А. П., Стрелкова О. С. Географическое распределение полиплоидов. II. Исследование флоры Алтая // Ученые записки Ленинградского государственного педагогического университета им. А. И. Герцена, 1948. Т. 66, вып. 8. С. 179–193.
Soltis D. E., Misra B. B., Shan S., Chen S., Soltis P. S. 2016a. Polyploidy and the proteome. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1864: 896–907. DOI: 10.1016/j.bbapap.2016.03.010
Soltis D. E., Segovia-Salcedo M. C., Jordon-Thaden I., Majure L., Miles N. M., Mavrodiev E. V., Mei W., Cortez M. B., Soltis P. S., Gitzendanner M. A. 2014a. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist 202(4): 1105–1117. URL: https://www.jstor.org/stable/newphytologist.202.4.1105
Soltis D. E., Soltis P. S. 1989. Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae). Evolution 43(3): 586–594. DOI: 10.1111/j.1558-5646.1989.tb04254.x
Soltis D. E., Visger C. J., Marchant D. B., Soltis P. S. 2016b. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103: 1146–1166. DOI: 10.3732/ajb.1500501
Soltis D. E., Visger C. J., Soltis P. S. The polyploidy revolution then… and now: Stebbins revisited. Amer. J. Bot. 2014b. 101: 1057–1078. DOI: 10.3732/ajb.1400178
Soreng R. J., Peterson P. M., Romaschenko K., Davidse G., Zuloaga F. O., Judziewicz E. J. Filgueiras T. S., Davis J. I., Morrone O. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 53(2): 117–137. DOI: 10.1111/jse.12150
Stebbins G. L. Jr. 1940. The significance of polyploidy in plant evolution. American Naturalist 74: 54–66. DOI: 10.1086/280872
Stebbins G. L. 1980. Polyploidy. In: W. H. Lewis (ed.). Plants: Unsolved Problems and Prospects. Polyploidy. New York: Plenum Press. Pp. 495–520. DOI: 10.1007/978-1-4613-3069-1_26
Stebbins G. L. 1984. Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Botanica Helvetica 94: 1–13.
Stebbins G. L. 1986. The origin and success of polyploids in the boreal circumpolar flora: a new analysis. Trans. Bot. Sci. Edinburgh. 45: 17–31. DOI: 10.1080/03746608608684991
Stein J. C., Yu Y., Copetti D., Zwickl D. J., Zhang L., Zhang C., et al. 2018. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genet. 50(2): 285–296. DOI:10.1038/s41588-018-0040-0
Suissa J. S., Kinosian S. P., Schafran P. W., Bolin J. F., Taylor W. C., Zimmer E. A. 2022. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoëtes) complex. Molec. Phylogenet. Evol. 166, 107332. DOI: 10.1016/j.ympev.2021.107332
Sun D., Wang C., Zhang X., Zhang W., Jiang H., Yao X. Liu L., Wen Z., Niu G., Shan X. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Res. 6: 82. DOI: 10.1038/s41438-019-0164-0
Sutherland B. L., Galloway L. F. 2017. Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytologist 213(1): 404–412. DOI: 10.1111/nph.14116
Szövényi P., Gunadi A., Li F. W. 2021. Charting the genomic landscape of seed-free plants. Nature Plants 7(5): 554–565. DOI: 10.1038/s41477-021-00888-z
Takahashi H. 2019. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J. Exp. Bot. 70(16): 4075–4087. DOI: 10.1093/jxb/erz132
Takamiya M. 1993. Comparative karyomorphology and interrelationships of Selaginella in Japan. J. Pl. Res. 106: 149–166.
Tate J. A., Joshi P., Soltis K. A., Soltis P. S., Soltis D. E. 2009. On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol. 9(1): 1–10. DOI: 10.1186/1471-2229-9-80
The International Brachypodium Initiative. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 263: 763–768. DOI: 10.1038/nature08747
Tkach N., Schneider J., Döring E., Wölk A., Hochbach A., Nissen J. Winterfeld G., Meyer S., Gabriel J., Hoffmann M. H., Röser M. 2020. Phylogenetic lineages and the role of hybridization as driving force of evolution in grass supertribe Poodae. Taxon 69(2): 234–277. DOI: 10.1002/tax.12204
Tomaszewska P., Schwarzacher T., Heslop-Harrison J. S. (P.). 2022. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. Front. Plant Sci. 13: 1026364. DOI: 10.3389/fpls.2022.1026364
Цвелев Н. Н. О возможности деспециализации путем гибридогенеза на примере эволюции трибы Triticeae семейства злаков (Pоасеае) // Журн. общ. биол., 1975. Т. 36, № 1. С. 90–99.
Цвелев Н. Н. Злаки СССР. Л.: Наука. Ленинград. отд-ние, 1976. 788 с.
Цвелев Н. Н. О геномном критерии родов у высших растений // Бот. журн., 1991. Т. 76, № 5. С. 669–676.
Цвелев Н. Н. Гибридизация как один из факторов увеличения биологического разнообразия и геномный критерий родов у высших растений // Биологическое разнообразие: подходы к изучению и сохранению. СПб.: ЗИН, 1992. С. 193–201.
Цвелев Н. Н. Вид как один из таксонов // Бюлл. МОИП. Отд. биол., 1995. Т. 100, вып. 5. С. 62–68.
Udall J. A., Long E., Ramaraj T., Conover J. L., Yuan D., Grover C. E., Gong L., Arick M. A., Masonbrink R. E., Peterson D. G., Wendel J. F. 2019. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front. Plant Sci. 10: 1541. DOI: 10.3389/fpls.2019.01541
Urquiaga M. C. D. O., Thiebaut F., Hemerly A. S., Ferreira P. C. G. 2021. From trash to luxury: the potential role of plant LncRNA in DNA methylation during abiotic stress. Front. Plant Sci. 11: 603246. DOI: 10.3389/fpls.2020.603246
Van de Peer Y., Mizrachi E., Marchal K. 2017. The evolutionary significance of polyploidy. Nature Rev. Genet. 18: 411–424. DOI: 10.1038/nrg.2017.26
Vavilov N. I. 1922. The law of homologous series in variation. J. Genet. 12(1): 47–89.
Villa S., Montagna M., Pierce S. 2022. Endemism in recently diverged angiosperms is associated with polyploidy. Plant Ecol. 223: 479–492. DOI: 10.1007/s11258-022-01223-y
Vollger M. R., Guitart X., Dishuck P. C., Mercuri L., Harvey W. T., Gershman A., Diekhans M., Sulovari A., Munson K. M., Lewis A. P., Hoekzema K. 2022. Segmental duplications and their variation in a complete human genome. Science 376(6588): p.eabj6965. DOI: 10.1126/science.abj6965
Vosa C. G. 1979. Heterochromatic banding patterns in the chromosomes of Brimeura (Liliaceae). Pl. Syst. Evol. 132: 141–148. DOI: 10.1007/BF00983088
Wang J., Yu J., Sun P., Li Y., Xia R., Liu Y. et al. 2016. Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genomic changes in grasses. Front. Genet. 7: 174. DOI: 10.3389/fgene.2016.00174
Wang R. R. C., Lu B. 2014. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J. Syst. Evol. 52(6): 697–705. DOI: 10.1111/jse.12084
Wang R. R. C., Von Bothmer R., Dvorak J., Fedak G., Linde-Laursen I., Muramatsu M. 1994. Genome symbols in the Triticeae (Poaceae). In: R. R. C. Wang (ed.). 2nd International Triticeae Symposium. Logan, Utah: Herbarium Publication. Pp. 29–34.
Wang X., Morton J. A., Pellicer J., Leitch I. J., Leitch A. R. 2021. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant J. 107(4): 1003–1015. DOI: 10.1111/tpj.15363
Wang W., Zheng H., Fan C., Li J., Shi J., Cai Z., Zhang G., Liu D., Zhang J., Vang S., Lu Z. 2006. High rate of chimeric gene origination by retroposition in plant genomes. The Plant Cell 18(8): 1791–1802. DOI: 10.1105/tpc.106.041905
Wei H., Liu J., Guo Q., Pan L., Chai S., Cheng Y., Ruan M., Ye Q., Wang R., Yao Z., Zhou G. 2020. Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana. Evolutionary Bioinformatics 16, p.1176934320911055. DOI: 10.1177/117693432091105
Weng R. f. 1989. Cytological observations on nine species of Dryopteris in China. In: D. Hong (ed.). Plant Chromosome Research. Pp. 345–348.
Winkler H. 1916. Uber die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeitschr. F. Bot. 8: 417– 531.
Winterfeld G., Schneider J., Perner K., Röser M. 2014. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa. Cytogenet. Genome Res. 142(3): 204–225. DOI: 10.1159/000361002
Wood T. E., Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., Rieseberg L. H. 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. 106(33): 13875–13879. DOI: 10.1073/pnas.0811575106
Wu F., Shi X., Lin X., Liu Y., Chong K., Theisen G., Meng Z. 2017. The ABC s of flower development: mutational analysis of AP 1/FUL‐like genes in rice provides evidence for a homeotic (A)‐function in grasses. The Plant J. 89(2): 310–324. DOI: 10.1111/tpj.13386
Wu L., Liu S., Qi H., Cai H., Xu M. 2020. Research progress on plant long non-coding RNA. Plants. 9(4): 408. DOI: 10.3390/plants9040408
Xiong Z., Gaeta R. T., Pires J. C. 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl Acad. Sci. 108(19): 7908–7913. DOI: 10.1073/pnas.1014138108
Yang C. R., Baum B. R., Chen W. H., Zhang H. Q., Liu X. Y., Fan X., Sha L. N., Kang H. Y., Wang Y., Zhou Y. H. 2016. Genomic constitution and taxonomy of the Chinese hexaploids Elymus cylindricus and E. breviaristatus (Poaceae: Triticeae). Bot. J. Linn. Soc. 182(3): 650–657. DOI: 10.1111/boj.12469
Yang S., Gu T., Pan C., Feng Z., Ding J., Hang Y., Chen J. Q., Tian D. 2008. Genetic variation of NBS-LRR class resistance genes in rice lines. Theor. Appl. Genet. 116(2): 165–177. DOI: 10.1007/s00122-007-0656-4
Yao C., Yan H., Zhang X., Wang R. 2017. A database for orphan genes in Poaceae. Exp. Therapeutic Medicine 14(4): 2917–2924. DOI: 10.3892/etm.2017.4918
Yen C., Yang J.-L., Yen Y. 2005. Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotaxonomica Sinica 43(1): 82–93. URL: https://www.jse.ac.cn/EN/Y2005/V43/I1/82
Yoo M. J., Szadkowski E., Wendel J. F. 2013. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110(2): 171–180. DOI: 10.1038/hdy.2012.94
Yu J., Tehrim S., Zhang F., Tong C., Huang J., Cheng X., Dong C., Zhou Y., Qin R., Hua W., Liu S. 2014. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 15(1): 1–18. DOI: 10.1186/1471-2164-15-3
Yu J., Wang J., Lin W., Li S., Li H., Zhou J., Ni P., Dong W., Hu S., Zeng C., Zhang J. 2005. The genomes of Oryza sativa: a history of duplications. PLoS Biology. 3(2): p. e38. DOI: 10.1371/journal.pbio.0030038
Yuan D., He X., Han X., Yang C., Liu F., Zhang S., Luan H., Li R., He J., Duan X., Wang D. 2021. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia. Briefings in Bioinformatic 22(5): p.bbab099. DOI: 10.1093/bib/bbab099
Zelenin A. V., Rodionov A. V., Bolsheva N. L., Badaeva E. D., Muravenko O. V. 2016. Genome: origins and evolution of the term. Molecular Biology 50(4): 542–550. DOI: 10.1134/S0026893316040178
Zhan S. H., Otto S. P., Barker M. S. 2021. Broad variation in rates of polyploidy and dysploidy across flowering plants is correlated with lineage diversification. bioRxiv. DOI: 10.1101/2021.03.30.436382; this version posted March 31, 2021.
Zhang A., Li N., Gong L., Gou X., Wang B., Deng X. et al. 2017. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiol. 175(2): 828–847. DOI: 10.1104/pp.17.00819
Zhang J., Fu X.-X., Li R.-Q., Zhao X., Liu Y., Li M.-H., Zwaenepoel A., Ma H., Goffinet B., Guan Y. L., et al. 2020. The hornwort genome and early land plant evolution. Nature Plants 6(2): 107–118. DOI: 10.1038/s41477-019-0588-4
Zhang L., Zhu X., Zhao Y., Guo J., Zhang T., Huang W., Huang J., Hu Y., Huang C. H., Ma H. 2022. Phylotranscriptomics resolves the phylogeny of Pooideae and uncovers factors for their adaptive evolution. Molec. Biol. Evol. 39(2): msac026. DOI: 10.1093/molbev/msac026
Zhang M., Liu X. K., Fan W., Yan D. F., Zhong N. S., Gao J. Y., Zhang W. J. 2018. Transcriptome analysis reveals hybridization-induced genome shock in an interspecific F1 hybrid from Camellia. Genome 61(7): 477–485. DOI: 10.1139/gen-2017-0105
Zhao Z., Zang S., Zou W., Pan Y. B., Yao W., You C., Que Y. 2022. Long non-coding RNAs: new players in plants. Int. J. Molec. Sci. 23(16): 9301. DOI: 0.3390/ijms23169301
Zhong Y., Liu Y., Wu W., Chen J., Sun C., Liu H., Shu J., Ebihara A., Yan Y., Zhou R., Schneider H. 2022. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides. Genome Biol. Evol. 14(8): evac127. DOI: 10.1093/gbe/evac127
Zhou M., Xu C., Shen L., Xiang W., Tang D. 2017. Evolution of genome sizes in Chinese Bambusoideae (Poaceae) in relation to karyotype. Trees 31(1): 41–48. DOI: 10.1007/s00468-016-1453-y
Zhou Y., Zhang C., Zhang L., Ye Q., Liu N., Wang M., Long G., Fan W., Long M., Wing R. A. 2022. Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biol. 23: 130. DOI: 10.1186/s13059-022-02696-w
Zhuravleva G. A. 2015. The birth and death of genes. Genetika 51(1): 14–27. [In Russian] (Журавлева Г. А. Рождение и смерть генов // Генетика, 2015. Т. 51, № 1. С. 14–27).

Загрузки

Опубликован

2022-12-24

Выпуск

Раздел

Научные статьи

Как цитировать

Тандемные дупликации генов, эуполиплоидия и вторичная диплоидизация – генетические механизмы видообразования и прогрессивной эволюции в мире растений // Turczaninowia, 2022. Vol. 25, № 4. P. 87–121 DOI: 10.14258/turczaninowia.25.4.12. URL: http://new.journal.asu.ru/tur/article/view/12369.

Наиболее читаемые статьи этого автора (авторов)