EFFECT OF MICROWAVE IRRADIATION ON ARABINOGALACTAN AND ITS INTERACTION WITH BETULIN DIACETATE

Authors

  • Юрий (Yurij) Николаевич (Nikolaevich) Маляр (Malyar) Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University http://orcid.org/0000-0001-9380-0290
  • Михаил (Mihail) Александрович (Aleksandrovich) Михайленко (Mikhailenko) Institute of Solid State Chemistry and Mechanochemistry SB RAS
  • Наталья (Natal'ja) Алексеевна (Alekseevna) Панкрушина (Pankrushina) N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
  • Александр (Aleksandr) Николаевич (Nikolaevich) Михеев (Mikheev) Novosibirsk State University
  • Светлана (Svetlana) Алексеевна (Alekseevna) Кузнецова (Kuznetsova) Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University
  • Татьяна (Tat'jana) Петровна (Petrovna) Шахтшнейдер (Shakhtshneider) Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

DOI:

https://doi.org/10.14258/jcprm.2017041854

Keywords:

arabinogalactan, betulin diacetate, microwave irradiation, complexation, solubility

Abstract

Betulin diacetate (BDA) has a variety of biological activities, but poor solubility in water limits its application. The use of arabinogalactan (AG) as a complexing agent is a promising method for solving the problem of solubilization of drugs. In this work, influence of microwave (MW) irradiation on the properties of AG and BDA and their interaction in the aqueous suspension with formation of a water-soluble supramolecular complex was studied. It is shown that the MW heating of AG under hard conditions can lead to degradation of the biopolymer. The use of MW heating allowed significantly reducing the complex preparation time compared to the conventional synthesis in a water bath. The preliminary mechanical treatment of the mixture of components, leading to the formation of mechanocomposites, inhibited the reaction between the components in the aqueous suspension under MW irradiation. The IR spectroscopy method has shown that a supramolecular complex formed under MW irradiation similar to that formed by conventional heating. BDA-AG complex was isolated from a MW heated solution as a thin film, which may be a promising material for pharmaceutical applications.

Downloads

Download data is not yet available.

Author Biographies

  • Юрий (Yurij) Николаевич (Nikolaevich) Маляр (Malyar), Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University
    кандидат химических наук, научный сотрудник, доцент
  • Михаил (Mihail) Александрович (Aleksandrovich) Михайленко (Mikhailenko), Institute of Solid State Chemistry and Mechanochemistry SB RAS
    кандидат химических наук, научный сотрудник
  • Наталья (Natal'ja) Алексеевна (Alekseevna) Панкрушина (Pankrushina), N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
    кандидат химических наук, старший научный сотрудник
  • Александр (Aleksandr) Николаевич (Nikolaevich) Михеев (Mikheev), Novosibirsk State University
    старший научный сотрудник
  • Светлана (Svetlana) Алексеевна (Alekseevna) Кузнецова (Kuznetsova), Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University
    доктор химических наук, профессор, главный научный сотрудник
  • Татьяна (Tat'jana) Петровна (Petrovna) Шахтшнейдер (Shakhtshneider), Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

    доктор химических наук, профессор, старший научный сотрудник, заведующая лабораторией

References

1. Kappe C.O. Angewandte Chemie International Edition, 2004, vol. 43, no. 46, pp. 6250–6284.

2. Alexandre F.-R., Domon L., Frère S., Testard A., Thièry V., Besson T. Molecular Diversity, 2003, vol. 7, no. 2, pp. 273–280.

3. Doehler D., Peterlik H., Binder W.H. Polymer, 2015, vol. 69, pp. 264–273.

4. De la Hoz A., Loupy A. Microwaves in Organic Synthesis: Third Edition. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2013, vol. 2, 1251 p.

5. Shakhtshneider T.P., Kuznetsova S.A., Mikhailenko M.A., Zamai A.S., Malyar Yu.N., Zamai T.N., Boldyrev V.V. Chemistry of Natural Compounds, 2013, vol. 49, pp. 470–474.

6. Patent 2013117137 (WO). 15.08.2013.

7. Shakhtshneider T.P., Mikhailenko M.A., Kuznetsova S.A., Malyar Yu.N., Zamai A.S. Boldyrev V.V. Natural Product Research, 2016, vol. 30, no. 12, pp. 1382–1387.

8. Patent 2324700 (RU). 20.05.2008 (in Russ.).

9. Patent 2273646 (RU). 10.04.2006 (in Russ.).

10. Dushkin A.V., Meteleva E.S., Tolstikova T.G., Tolstikov G.A., Polyakov N.E., Neverova N.A., Medvedeva E.N., Babkin V.A. Russian Chemical Bulletin, 2008, vol. 57, no. 6, pp. 1299–1307.

11. Grassie N., Scott G. Polymer Degradation and Stabilisation. Cambridge University Press, 1985, 222 p.

12. Butyagin P. Journal of Materials Synthesis and Processing, 2000, vol. 8, no. 3, pp. 205–211.

Downloads

Published

2017-05-31

Issue

Section

Low-molecular weight compounds

How to Cite

[1]
2017. EFFECT OF MICROWAVE IRRADIATION ON ARABINOGALACTAN AND ITS INTERACTION WITH BETULIN DIACETATE. chemistry of plant raw material. 4 (May 2017), 73–79. DOI:https://doi.org/10.14258/jcprm.2017041854.

Similar Articles

1-10 of 95

You may also start an advanced similarity search for this article.