О спектре оператора кривизны конформно (полу)плоских римановых метрик
DOI:
https://doi.org/10.14258/izvasu(2015)1.1-19Ключевые слова:
спектр оператора кривизны, конформно (полу)плоские метрикиАннотация
При исследовании римановых многообразий важное значение имеет установление связи между различными типами кривизны и топологией риманова пространства. Одной из особых кривизн при этом является секционная кривизна. Наиболее наглядными примерами этого являются теоремы Адамара – Картана, М. Громова, теорема о сфере, теорема сравнения углов треугольника А.Д. Александрова − В.А. Топоногова, уравнения теории относительности А. Эйнштейна и ряд других результатов. В общем случае задача исследования римановых многообразий с ограничениями на секционную кривизну представляется достаточно сложной. Естественно поэтому рассматривать ее в классе однородных римановых пространств, в частности в классе групп Ли с левоинвариантной римановой метрикой. В данном направлении хорошо известны результаты М. Берже, С. Аллофа – Н. Уоллача, ряда других математиков по исследованию однородных римановых многообразий положительной секционной кривизны. Другим естественным ограничением является изучение секционной кривизны, а также ее оператора в классе конформно плоских римановых метрик. Данный класс метрик допускает удобное аналитическое представление, а спектр оператора секционной кривизны тесно связан с секционной кривизной. Исследован спектр оператора секционной кривизны конформно плоских римановых многообразий. Кроме того, изучен спектр оператора секционной кривизны в случае конформно полуплоских метрических групп Ли.
DOI 10.14258/izvasu(2015)1.1-19
Скачивания
Библиографические ссылки
Berge M. A Panoramic View of Riemannian Geometry. - Berlin, 2002.
2
Исангулов Р.Р. Изоспектральные плоские 3-многообразия // Сиб. матем. журн. - 2004. - Т. 45, №5.
3
Gordon C.S. Survey of Isospectral Manifolds // Handbook of Differential Geometry. - Amsterdam, 2000. - V. I.
4
Kac M. Can One Hear the Shape of a Drum? // Amer. Math. Monthly. - 1966. - №73.
5
Ким Х., Ким Дж. Об одном эквивалентном условии плоской метрики // Сиб. матем. журн. - 2003. - Т. 44, №5.
6
Singer I.M., Thorpe J.A. The curvature of 4-dimensional Einstein spaces // Global Analisis, Papers in Honour of K. Kodarira. - Tokyo, 1969.
7
Бессе А. Многообразия Эйнштейна / пер. с англ. : в 2 т. - М., 1990.
8
Nikonorov Yu.G., Rodionov E.D., Slavskii V.V. Geometry of homogeneous Riemannian manifolds // Journal of Mathematical Sciences. - 2007. - Vol. 146, №6.
9
Алексеевский Д.В., Кимельфельд Б.Н. Классификация однородных конформно плоских римановых многообразий // Математические заметки. 1978. Т. 24, №1.
10
Гладунова О.П., Родионов Е.Д., Славский В.В. О гармонических тензорах на трехмерных группах Ли с левоинвариантной римановой метрикой // Владикавказский математический журнал. 2011. Т. 13, №3.
11
Гладунова О.П., Родионов Е.Д., Славский В.В. О спектре оператора кривизны конформно плоских римановых многообразий //ДАН. 2013. Т. 450, №2.
12
Гладунова О.П., Оскорбин Д.Н. Применение пакетов символьных вычислений к исследованию спектра оператора кривизны на метрических группах Ли // Известия Алтайского гос. ун-та. 2013. №1/1.
13
Оскорбин Д.Н., Родионов Е.Д., Хромова О.П. О вычислении спектра оператора кривизны конформно (полу)плоских римановых метрик // Известия Алтайского гос. ун-та. 2013. №1/2.
14
Оскорбин Д. Н., Родионов Е. Д. О спектре оператора кривизны трехмерных групп Ли с левоинвариантной римановой метрикой // ДАН. 2013. Т. 450, №2.
Загрузки
Выпуск
Раздел
Лицензия
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).