Влияние давления на структуру и электронные свойства кристаллогидратов карбоната кальция
УДК 548
DOI:
https://doi.org/10.14258/izvasu(2020)4-05Ключевые слова:
кристаллогидраты, карбонат кальция, расчеты, давление, структура, сжимаемость, плотности состояний, ширина запрещенной зоныАннотация
На основе теории функционала плотности (DFT) и метода линейной комбинации атомных орбиталей (ЛКАО) проведено исследование зависимости структуры и электронных свойств кристаллогидратов CaCO3-H2O и CaCO3-6H2O от давления. Расчеты проведены с помощью программного пакета CRYSTAL17 и градиентного функционала PBE. Вычислены параметры решеток кристаллогидратов карбоната кальция и их зависимости от внешнего гидростатического давления. Представленные в настоящей работе расчетные данные хорошо согласуются с имеющимися экспериментальными измерениями. На основе вычисленных зависимостей структурных параметров от давления получены зависимости линейной сжимаемости от направления. Показано, что линейная сжимаемость гексагидрата карбоната кальция, в отличие от моногидрата карбоната кальция, является сильно анизотропной (наименьшая и наибольшая величины сжимаемости соотносятся как K max /K min ~ 4). При этом максимальная сжимаемость реализуется не вдоль кристаллографических осей, а между ними (между осей a и с). Объемный модуль сжатия для моногидрата (CaCO3-H2O) больше, чем для гексагидрата (CaCO3-6H2O). Вычислены полные и парциальные плотности электронных состояний для CaCO3-H2O и CaCO3-6H2O. Также для кристаллогидратов карбоната кальция установлены зависимости ширин запрещенных зон от давления. Показано, что с ростом давления ширина запрещенной зоны для CaCO3-6H2O увеличивается в большей степени, чем для CaCO3-H2O.
Скачивания
Библиографические ссылки
Zhang Y., Zindler A. Distribution and evolution of carbon and nitrogen in Earth // Earth Planet. Sci. Lett. 1993. Vol. 117. DOI: 10.1016/0012-821X(93)90088-Q.
Lee K., Wagermaier W, Masic A., Kommareddy K.P., Bennet M. Self-assembly of amorphous calcium carbonate microlens arrays // Nature Comm. 2012. Vol. 3. DOI: 10.1038/ncomms1720.
Hirano S., Yogo T., Kikuta K. Synthetic calcite single crystals for optical device // Prog. Crystal Growth and Charact. 1991. Vol. 23. DOI: 10.1016/0960-8974(92)90027-N.
Addadi L., Raz S., Weiner S. Amorphous calcium carbonate and its roles in biomineralization // Adv. Mater. 2003. Vol. 15. DOI: 10.1002/adma.200300381.
Nooijer L.J., Spero H.J., Erez J., Bijma J., Reichart G.J. Biomineralization in perforate foraminifera // Earth-Science Reviews. 2014. Vol. 135. DOI: 10.1016/j.earscirev.2014.03.013.
Lennie A.R., Tang C.C., Thompson S.P. The structure and thermal expansion behavior of ikaite, CaCO3-6H2O, from 7=114 to T=293 K // Mineral. Magaz. 2004. Vol. 618. DOI: 10.1180/0026461046810176.
Marschner H. Hydrocalcite (CaCO3-H2O) and nes-quehonite (MgCO3-3H2O) in carbonate scales // Science. 1969. Vol. 165. DOI: 10.1126/science.165.3898.1119.
Swainson I.P The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery // Am. Mineral. 2008. Vol. 93. DOI: 10.2138/am.2008.2825.
Tateno N., Kyono A. Structural change induced by dehydration in ikaite (CaCO3-6H2O) // J. Mineral. Petrol. Sci. 2014. Vol. 109. DOI: 10.2465/jmps.140320.
Lennie A.R. Ikaite (CaCO3-6H2O) compressibility at high water pressure: a synchrotron X-ray diffraction study // Mineral. Magaz. 2005. Vol. 69. DOI: 10.1180/0026461056930254.
Demichelis R., Raiteri P., Gale J.D. Structure of hydrated calcium carbonates: A first-principles study // J. Cryst. Growth. 2014. Vol. 401. DOI: 10.1016/j.jcrysgro.2013.10.064.
Costa S.N., Freire V.N., Caetano E.W., Maia F.F., Barboza C.A. DFT Calculations with van der Waals Interactions of Hydrated Calcium Carbonate Crystals CaCO3-(H2O, 6H2O): Structural, Electronic, Optical, and Vibrational Properties // J. Phys. Chem. A. 2016. Vol. 120. DOI: 10.1021/acs.jpca.6b05436.
Korabel’nikov D.V, Zhuravlev Yu.N. Compressibility Anisotropy and Electronic Properties of Oxyanionic Hydrates // J. Phys. Chem. A. 2017. Vol. 121. DOI: 10.1021/acs.jpca.7b04776.
Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics // J. Chem. Phys. 2014. Vol. 140. DOI: 10.1063/1.4869598.
Dovesi R., Erba A., Orlando R, Zicovich-Wilson C.M., Civalleri B. Quantum-mechanical condensed matter simulations with CRYSTAL // WIREs Comput. Mol. Sci. 2018. Vol. 8. DOI: 10.1002/wcms.1360.
Perdew J.P, Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. Vol. 77. DOI: 10.1103/PhysRevLett.77.3865.
CRYSTAL-Basis Sets Library. URL: https://www.crystal.unito.it/basis-sets.php.
Broyden C.G. The convergence of a class of double-rank minimization algorithms // J. Appl. Math. 1970. Vol. 6. DOI: 10.1093/imamat/6.3.222.
Cliffe M.J., Goodwin A.L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination // J. Appl. Cryst. 2012. Vol. 45. DOI: 10.1107/ S0021889812043026.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).