Relativistic Dynamics of a Point as an Emergent Phenomenon in a Standing Wave System
DOI:
https://doi.org/10.14258/izvasu(2015)1.1-02Keywords:
special relativity, standing waves, dynamics, quantum mechanicsAbstract
In this paper, problems of relativistic kinematics are studied, and a formula of infinite string oscillations U(x, t) = cos Ф(1)(x, t) cos S(x, t) with the phase motion Ф(1) = 0 in accordance with the arbitrarily given law x = X(t) (|v| < c, where v = X; c is the sound velocity) is obtained. The obtained formula allows us to trace the emergence of one-dimensional relativistic dynamics laws for a material point. It is shown that S(x, t) is a solution of Hamilton Jacobi equation and can be considered as the action of the "particle" with Ф(1) = 0 phase. The phase motion is likely to be influenced by the potential V (x, t) = p(t)(X(t) − x) (where p is a momentum of the velocity v), and obeys the Newton equation and the Hamilton equations. The function ψ = exp (iS) is a solution of the Schrodinger equation with a relativistic Hamiltonian operator with the potential V (x, t), in which the operator √−c2∇2 + m2c4 is expanded into series. In a non-relativistic case with the particle speed v ≪ c, this equation coincides with the normal Schrodinger equation. It is demonstrated that the relativistic equation is linked with the one-dimensional Dirac equation in the Foldy Wouthuysen representation under condition of magnetic field absence. Further, the possibility of complex structure objects introduction in the framework of a linear wave model is investigated.
DOI 10.14258/izvasu(2015)1.1-02
Downloads
References
Voigt W. Ueber das Doppler’sche Princip // Gottinger Nachr. 1887. №8.
2
Лоренц Г.А. Электромагнитные явления в системе, движущейся с любой скоростью, меньшей скорости света // Принцип относительности:cборник работ классиков релятивизма. Л., 1935.
3
Гамильтон У.Р. Об общем методе представления путей света и планет частными производными характеристической функции // Избранные труды. М., 1994.
4
Бройль Л. де. Исследования по теории квантов // Избранные научные труды. Т. 1. М., 2010.
5
Шредингер Э. Квантование как задача о собственных значениях // Избранные труды по квантовой механике. М., 1976.
6
Поляков А.М. Калибровочные поля и струны. Ижевск., 1999.
7
Рыбаков Ю.П., Санюк В.И. Многомерные солитоны. Введение в теорию и приложения. М., 2001.
8
Broglie L. de. An Iintroduction to the Study of Wave Mechanics. - Methuen & Co. Ltd, 1930.
9
Holland P.R. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. - Cambridge, 1993.
10
Zheng-Johansson J.X., Johansson P-I. Unification of Classical, Quantum and Relativistic Mechanics and of the Four Forces. - N.Y., 2006.
11
Иванов Г.П. Стоячая волна - верховный учитель физики [Электронный ресурс]. - Режим доступа: http://www.tts.lt/ nara/stechwelle/stechwelle.htm (дата обращения: 24.4.2014).
12
German D.A. Special Relativity [Электронный ресурс]. - Режим доступа: http:// www.relativity4u.com/index.html (дата обращения: 13.5.2014).
13
Shanahan D. A Case for Lorentzian Relativity // Foundations of Physics. - 2014. - Vol. 44, Issue 4.
14
Гончаров А.И. Стоячие волны как системы отсчета: классическая модель релятивистского пространства-времени // Известия Алтайского гос. ун-та. - 2013. - 1/2(77).
15
Гончаров А.И. Наглядная интерпретация релятивистской кинематики с помощью метода стоячих волн (часть 1) // Известия Алтайского гос. ун-та. - 2014. - 1/2(81).
16
Гончаров А.И. К проблеме наглядной интерпретации релятивистской кинематики : препринт АлтГУ. - Барнаул, 2014.
17
Багров В.Г., Белов В.В., Задорожный В.Н., Трифонов А.Ю. Методы математической физики. IV. Уравнения математической физики. - Томск, 2002.
18
Крауфорд Ф. Волны. - М., 1976.
19
Бьеркен Дж.Д., Дрелл С.Д. Релятивистская квантовая теория. - Т. 1. - М., 1978.
20
Бройль Л. де. Волновая механика и корпускулярная структура вещества и излучения // Избранные научные труды. - Т. I. - М., 2010.
Downloads
Issue
Section
License
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).