Mathematical Modeling in the Study of the Ricci Operator on Four-Dimensional Locally Homogeneous (Pseudo)Riemannian Manifolds with Isotropic Weyl Tensor

УДК 519.8:514.7

Authors

  • S.V. Klepikova Altai State University (Barnaul, Russia)
  • T.P. Makhaeva Altai State Pedagogical University (Barnaul, Russia)

DOI:

https://doi.org/10.14258/izvasu(2020)4-14

Keywords:

locally homogeneous spaces, Ricci operator, isotropic Weyl tensor, Lie algebras

Abstract

It is known that a locally homogeneous manifold can be obtained from a locally conformally homogeneous (pseudo)Riemannian manifolds by a conformal deformation if the Weyl tensor (or the Schouten-Weyl tensor in the three-dimensional case) has a nonzero squared length. Thus, the problem arises of studying (pseudo)Riemannian locally homogeneous and locally conformally homogeneous manifolds, the Weyl tensor of which has zero squared length, and itself is not equal to zero (in this case, the Weyl tensor is called isotropic).

One of the important aspects in the study of such manifolds is the study of the curvature operators on them, namely, the problem of restoring a (pseudo)Riemannian manifold from a given Ricci operator.

The problem of the prescribed values of the Ricci operator on 3-dimensional locally homogeneous Riemannian manifolds has been solved by O. Kowalski and S. Nikcevic. Analogous results for the one-dimensional and sectional curvature operators were obtained by D.N. Oskorbin, E.D. Rodionov, and O.P Khromova.

This paper is devoted to the description of an example of studying the problem of the prescribed Ricci operator for four-dimensional locally homogeneous (pseudo) Riemannian manifolds with a nontrivial isotropy subgroup and isotropic Weyl tensor.

Downloads

Download data is not yet available.

Author Biographies

  • S.V. Klepikova, Altai State University (Barnaul, Russia)

    аспирант Института математики и информационных технологий

  • T.P. Makhaeva, Altai State Pedagogical University (Barnaul, Russia)

    кандидат физико-математических наук, доцент кафедры математического анализа и прикладной математики

References

Kowalski O., Nikcevic S. On Ricci eigenvalues of locally homogeneous Riemann 3-manifolds // Geom. Dedicata. 1996. No. 1. DOI: 10.1007/BF00240002.
Calvaruso G., Kowalski O. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds // Cent. Eur. J. Math. 2009. Vol. 7(1). DOI: 10.2478/s11533-008-0061-5.
Оскорбин Д.Н., Родионов Е.Д. О спектре оператора кривизны трехмерных групп Ли с левоинвариантной римановой метрикой // ДАН. 2013. Т. 450, № 3. DOI: 10.7868/S0869565213140077.
Оскорбин Д.Н., Родионов Е.Д., Хромова О.П. О вычислении спектра оператора кривизны конформно (полу)плоских римановых метрик // Известия АлтГУ. 2013. № 1-2(77). DOI: 10.14258/izvasu(2013)1.2-04.
Клепикова С.В., Хромова О.П. Об операторе секционной кривизны на трехмерных группах Ли с левоинвариантной лоренцевой метрикой // Известия АлтГУ. 2017. № 1(93). DOI: 10.14258/izvasu(2017)1-17.
Клепиков П.Н. О допустимых значениях спектра оператора одномерной кривизны трехмерных групп Ли с левоинвариантной лоренцевой метрикой // Сборник трудов всероссийской конференции «Математика и ее приложения: фундаментальные проблемы науки и техники». Барнаул, 2015.
Kowalski O. Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues // Nagoya Math. J. 1993. Vol. 132.
Bueken P. On curvature homogeneous three-dimensional Lorentzian manifolds // J. Geom. Phys. 1997. Vol. 22.
Calvaruso G. Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues // Diff. Geom. Appl. 2008. Vol. 26. DOI: 10.1016/j.difgeo.2007.11.031.
Calvaruso G. Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor // Journal of Mathematical Physics. 2007. Vol. 48. DOI: 10.1063/1.2825176.
Клепикова С.В., Хромова О.П. Локально однородные псевдоримановы многообразия размерности 4 с изотропным тензором Вейля // Известия Алт. ун-та. 2018. № 1(99). DOI: 10.14258/izvasu(2018)1-17.
Клепикова С.В. Изотропный тензор Вейля на четырехмерных локально однородных псевдоримановых многообразиях // Известия Алт. ун-та. 2019. № 1(105). DOI: 10.14258/izvasu(2019)1-13.

Downloads

Published

2020-09-09

Issue

Section

Математика и механика

How to Cite

Mathematical Modeling in the Study of the Ricci Operator on Four-Dimensional Locally Homogeneous (Pseudo)Riemannian Manifolds with Isotropic Weyl Tensor: УДК 519.8:514.7. (2020). Izvestiya of Altai State University, 4(114), 92-95. https://doi.org/10.14258/izvasu(2020)4-14

Similar Articles

1-10 of 95

You may also start an advanced similarity search for this article.