Математическое моделирование при исследовании оператора Риччи на четырехмерных локально однородных (псевдо)римановых многообразиях с изотропным тензором Вейля
УДК 519.8:514.7
DOI:
https://doi.org/10.14258/izvasu(2020)4-14Ключевые слова:
локально однородные пространства, оператор Риччи, изотропный тензор Вейля, алгебры ЛиАннотация
Известно, что из локально конформно однородного (псевдо)риманова пространства можно с помощью конформной деформации получить локально однородное пространство, если тензор Вейля (или тензор Схоутена-Вейля в трехмерном случае) имеет ненулевой квадрат длины. Таким образом, возникает задача об изучении (псевдо)римановых локально однородных и локально конформно однородных многообразий, тензор Вейля которых имеет нулевой квадрат длины, а сам не равен нулю (в этом случае тензор Вейля называется изотропным).
Одним из важных аспектов при изучении таких многообразий является изучение операторов кривизны на них, а именно задача о восстановлении (псевдо)риманова многообразия по заданному оператору Риччи.
Задача о предписанных значениях оператора Риччи на 3-мерных локально однородных римановых пространствах была решена О. Ковальским и С. Никшевич. Аналогичные результаты для операторов одномерной и секционной кривизны были получены Д.Н. Оскорбиным, Е.Д. Родионовым, О.П. Хромовой.
Данная работа посвящена описанию примера изучения вопроса о предписанном операторе Риччи для четырехмерных локально однородных (псевдо) римановых многообразий с нетривиальной подгруппой изотропии и изотропным тензором Вейля.
Скачивания
Библиографические ссылки
Calvaruso G., Kowalski O. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds // Cent. Eur. J. Math. 2009. Vol. 7(1). DOI: 10.2478/s11533-008-0061-5.
Оскорбин Д.Н., Родионов Е.Д. О спектре оператора кривизны трехмерных групп Ли с левоинвариантной римановой метрикой // ДАН. 2013. Т. 450, № 3. DOI: 10.7868/S0869565213140077.
Оскорбин Д.Н., Родионов Е.Д., Хромова О.П. О вычислении спектра оператора кривизны конформно (полу)плоских римановых метрик // Известия АлтГУ. 2013. № 1-2(77). DOI: 10.14258/izvasu(2013)1.2-04.
Клепикова С.В., Хромова О.П. Об операторе секционной кривизны на трехмерных группах Ли с левоинвариантной лоренцевой метрикой // Известия АлтГУ. 2017. № 1(93). DOI: 10.14258/izvasu(2017)1-17.
Клепиков П.Н. О допустимых значениях спектра оператора одномерной кривизны трехмерных групп Ли с левоинвариантной лоренцевой метрикой // Сборник трудов всероссийской конференции «Математика и ее приложения: фундаментальные проблемы науки и техники». Барнаул, 2015.
Kowalski O. Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues // Nagoya Math. J. 1993. Vol. 132.
Bueken P. On curvature homogeneous three-dimensional Lorentzian manifolds // J. Geom. Phys. 1997. Vol. 22.
Calvaruso G. Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues // Diff. Geom. Appl. 2008. Vol. 26. DOI: 10.1016/j.difgeo.2007.11.031.
Calvaruso G. Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor // Journal of Mathematical Physics. 2007. Vol. 48. DOI: 10.1063/1.2825176.
Клепикова С.В., Хромова О.П. Локально однородные псевдоримановы многообразия размерности 4 с изотропным тензором Вейля // Известия Алт. ун-та. 2018. № 1(99). DOI: 10.14258/izvasu(2018)1-17.
Клепикова С.В. Изотропный тензор Вейля на четырехмерных локально однородных псевдоримановых многообразиях // Известия Алт. ун-та. 2019. № 1(105). DOI: 10.14258/izvasu(2019)1-13.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).