Idempotent Analog of the Legendre Transformation and lts Application in Digital Processing of Signals
УДК 597.586
DOI:
https://doi.org/10.14258/izvasu(2020)4-15Keywords:
conformally-flat metrics, Legendre transform, one-dimensional curvatureAbstract
In recent years, a new area of mathematics — idempotent or “tropical” mathematics — has been intensively developed within the framework of the Sofus Lee international center, which is reflected in the works of V.P. Maslov, G.L. Litvinov, and A.N. Sobolevsky.
The Legendre transformation plays an important role in theoretical physics, classical and statistical mechanics, and thermodynamics. In mathematics and its applications, the Legendre transformation is based on the concept of duality of vector spaces and duality theory for convex functions and subsets of a vector space.
The purpose of this paper is to go beyond linear vector spaces using similar notions of duality in conformally flat Riemannian geometry and in idempotent algebra.An abstract idempotent analog of the Legendre transformation is constructed in a way similar to the polar transformation of the conformally flat Riemannian metric introduced in the works of E.D. Rodionov and V.V. Slavsky. Its capabilities for digital processing of signals and images are being investigated
Downloads
References
Abadi M., Enguerran Grandchamp E. Legendre Spectrum for texture classification // IEEE Xplore DOI: 10.1109/ICOSP.2006.345588.
Bachtis M.S. et al. Implementation of the Legendre transform for the muon track segment reconstruction in the ATLAS MDT chambers // IEEE Xplore DOI: 10.1109/NSSMIC.2007.4436434.
Владимиров В.С. Преобразование Лежандра выпуклых функций // Матем. заметки. 1967. Т. 1, вып. 6.
Родионов Е.Д., Славский В.В. Полярное преобразование конформно-плоских метрик // Матем. тр. Т. 20, № 2 (2017). Siberian Adv. Math. 2018. 28(2).
Kurkina M.V., Slavsky V.V., Rodionov E.D. Conformally convex functions and conformally flat metrics of nonnegative curvature // Докл. АН СССР. 2015. 91(3).
Литвинов Г.Л., Маслов В.П., Соболевский А.Н. Идемпотентная математика и интервальный анализ // Вычислительные технологии. 2001. Т. 6. № 6.
Куркина М.В. Об изменении кривизны конформно-плоской метрики при преобразовании Лежандра // Известия Алт. ун-та. 2018. 4(102)
Sergeev S., Schneider H. CSR expansions of matrix powers in max algebra. Transactions of the American Mathematical Society. 2012. № 364(11).
Славский В.В. Конформно плоские метрики ограниченной кривизны на n-мерной сфере. Исследования по геометрии «в целом» и математическому анализу. Новосибирск, 1987. Т. 9.
Hertrich-Jeromin U. Introduction to Mobius Differential Geometry. London mathematical society lecture note series. Cambridge University Press, 2003.
Решетняк Ю.Г. Теоремы устойчивости в геометрии и анализе. Новосибирск, 1996.
Топоногов В.А. Дифференциальная геометрия кривых и поверхностей. М., 2012.
Slavskii V.V. Conformally flat metrics and the geometry of the pseudo-Euclidean space // Siberian Math. J. (1994) 35, № 3.
Славский В.В. Оценка коэффициента квазиконформности области через кривизну квазигиперболической метрики // Сиб. мат. журн. 1999. Т. 40, № 4.
Балащенко В.В., Никоноров Ю.Г., Родионов Е.Д., Славский В.В. Однородные пространства: теория и приложения : монография. Ханты-Мансийск, 2008.
Родионов Е.Д., Славский В.В. Одномерная секционная кривизна римановых многообразий // Доклады АН. 2002. Т. 387, № 4.
Nikonorov Yu.G., Rodionov E.D., Slavskii V.V. Geometry of homogeneoues Riemannian manifolds // Journal of Mathematical Scieces. 2007. Vol. 146, № 6.
Kurkina M.V., Rodionov E.D., and Slavskii V.V. Conformally Convex Functions and Conformally Flat Metrics of Nonnegative Curvature // Doklady Mathematics. 2015. Vol. 91, № 3.
Downloads
Published
Issue
Section
License
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).