Idempotent Analog of the Legendre Transformation and lts Application in Digital Processing of Signals

УДК 597.586

Authors

  • M.V. Kurkina Yugra State University (Khanty-Mansiysk, Russia)
  • S.P. Semenov Yugra State University (Khanty-Mansiysk, Russia)
  • V.V. Slavsky Yugra State University (Khanty-Mansiysk, Russia)
  • O.V. Samarina Yugra State University (Khanty-Mansiysk, Russia)
  • O.A. Petuhova Yugra State University (Khanty-Mansiysk, Russia)
  • A.A. Petrov Yugra State University (Khanty-Mansiysk, Russia)
  • A.A. Finogenov Yugra State University (Khanty-Mansiysk, Russia)
  • V.A. Samarin Yugra State University (Khanty-Mansiysk, Russia)

DOI:

https://doi.org/10.14258/izvasu(2020)4-15

Keywords:

conformally-flat metrics, Legendre transform, one-dimensional curvature

Abstract

In recent years, a new area of mathematics — idempotent or “tropical” mathematics — has been intensively developed within the framework of the Sofus Lee international center, which is reflected in the works of V.P. Maslov, G.L. Litvinov, and A.N. Sobolevsky.

The Legendre transformation plays an important role in theoretical physics, classical and statistical mechanics, and thermodynamics. In mathematics and its applications, the Legendre transformation is based on the concept of duality of vector spaces and duality theory for convex functions and subsets of a vector space.

The purpose of this paper is to go beyond linear vector spaces using similar notions of duality in conformally flat Riemannian geometry and in idempotent algebra.An abstract idempotent analog of the Legendre transformation is constructed in a way similar to the polar transformation of the conformally flat Riemannian metric introduced in the works of E.D. Rodionov and V.V. Slavsky. Its capabilities for digital processing of signals and images are being investigated

Downloads

Download data is not yet available.

Author Biographies

  • M.V. Kurkina, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • S.P. Semenov, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • V.V. Slavsky, Yugra State University (Khanty-Mansiysk, Russia)

    доктор физико-математических наук, профессор

  • O.V. Samarina, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • O.A. Petuhova, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • A.A. Petrov, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • A.A. Finogenov, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

  • V.A. Samarin, Yugra State University (Khanty-Mansiysk, Russia)

    кандидат физико-математических наук, доцент

References

Handa A., Newcombe R.A., Angeli A., Davison A.J. Applications of Legendre-Fenchel transformation to computer vision problems. URL: http://www.doc.ic.ac.uk/ahanda/.
Abadi M., Enguerran Grandchamp E. Legendre Spectrum for texture classification // IEEE Xplore DOI: 10.1109/ICOSP.2006.345588.
Bachtis M.S. et al. Implementation of the Legendre transform for the muon track segment reconstruction in the ATLAS MDT chambers // IEEE Xplore DOI: 10.1109/NSSMIC.2007.4436434.
Владимиров В.С. Преобразование Лежандра выпуклых функций // Матем. заметки. 1967. Т. 1, вып. 6.
Родионов Е.Д., Славский В.В. Полярное преобразование конформно-плоских метрик // Матем. тр. Т. 20, № 2 (2017). Siberian Adv. Math. 2018. 28(2).
Kurkina M.V., Slavsky V.V., Rodionov E.D. Conformally convex functions and conformally flat metrics of nonnegative curvature // Докл. АН СССР. 2015. 91(3).
Литвинов Г.Л., Маслов В.П., Соболевский А.Н. Идемпотентная математика и интервальный анализ // Вычислительные технологии. 2001. Т. 6. № 6.
Куркина М.В. Об изменении кривизны конформно-плоской метрики при преобразовании Лежандра // Известия Алт. ун-та. 2018. 4(102)
Sergeev S., Schneider H. CSR expansions of matrix powers in max algebra. Transactions of the American Mathematical Society. 2012. № 364(11).
Славский В.В. Конформно плоские метрики ограниченной кривизны на n-мерной сфере. Исследования по геометрии «в целом» и математическому анализу. Новосибирск, 1987. Т. 9.
Hertrich-Jeromin U. Introduction to Mobius Differential Geometry. London mathematical society lecture note series. Cambridge University Press, 2003.
Решетняк Ю.Г. Теоремы устойчивости в геометрии и анализе. Новосибирск, 1996.
Топоногов В.А. Дифференциальная геометрия кривых и поверхностей. М., 2012.
Slavskii V.V. Conformally flat metrics and the geometry of the pseudo-Euclidean space // Siberian Math. J. (1994) 35, № 3.
Славский В.В. Оценка коэффициента квазиконформности области через кривизну квазигиперболической метрики // Сиб. мат. журн. 1999. Т. 40, № 4.
Балащенко В.В., Никоноров Ю.Г., Родионов Е.Д., Славский В.В. Однородные пространства: теория и приложения : монография. Ханты-Мансийск, 2008.
Родионов Е.Д., Славский В.В. Одномерная секционная кривизна римановых многообразий // Доклады АН. 2002. Т. 387, № 4.
Nikonorov Yu.G., Rodionov E.D., Slavskii V.V. Geometry of homogeneoues Riemannian manifolds // Journal of Mathematical Scieces. 2007. Vol. 146, № 6.
Kurkina M.V., Rodionov E.D., and Slavskii V.V. Conformally Convex Functions and Conformally Flat Metrics of Nonnegative Curvature // Doklady Mathematics. 2015. Vol. 91, № 3.

Downloads

Published

2020-09-09

Issue

Section

Математика и механика

How to Cite

Idempotent Analog of the Legendre Transformation and lts Application in Digital Processing of Signals: УДК 597.586. (2020). Izvestiya of Altai State University, 4(114), 96-101. https://doi.org/10.14258/izvasu(2020)4-15

Similar Articles

1-10 of 82

You may also start an advanced similarity search for this article.