Существование слабого решения двумерной задачи фильтрации в тонком пороупругом слое

УДК 532.546+536.425

Авторы

  • Павел Вячеславович Гилев Алтайский государственный университет (Барнаул, Россия)
  • Александр Алексеевич Папин Алтайский государственный университет (Барнаул, Россия)

DOI:

https://doi.org/10.14258/izvasu(2022)4-14

Ключевые слова:

двухфазная фильтрация, закон Дарси, насыщенность, пороупругость, разрешимость

Аннотация

В работе рассматривается математическая модель совместного движения двух несмешивающихся несжимаемых жидкостей в пороупругой среде. Данная модель является обобщением классической модели Маскета-Леверетта, в которой пористость считается заданной функцией пространственной координаты. В основе изучаемой модели лежат уравнения сохранения массы жидкостей и пористого скелета, закон Дарси для жидкостей, учитывающий движение пористого скелета, формула Лапласа для капиллярного давления, реологическое уравнение для пористости типа Максвелла и условие равновесия «системы в целом». В приближении тонкого слоя исходная задача сводится к последовательному определению пористости твердого скелета и его скорости, а затем выводится эллиптико-параболическая система для «приведенного давления» и насыщенности смачивающей фазы. В связи с вырождением на решении уравнений системы ее решение понимается в обобщенном смысле. Доказательство теоремы существования осуществляется в четыре этапа: регуляризация задачи, доказательство физического принципа максимума для насыщенности, построение галеркинских приближений, предельный переход по параметрам регуляризации на основе метода компенсированной компактности.

Скачивания

Данные по скачиваниям пока не доступны.

Биографии авторов

  • Павел Вячеславович Гилев , Алтайский государственный университет (Барнаул, Россия)

    студент факультета математики и информационных технологий

  • Александр Алексеевич Папин , Алтайский государственный университет (Барнаул, Россия)

    профессор, доктор физико-математических наук, заведующий кафедрой дифференциальных уравнений

Библиографические ссылки

Папин А.А., Подладчиков Ю.Ю. Изотермическое движение двух несмешиваю-щихся жидкостей в пороупругой среде // Известия Алт. гос. ун-та. 2015. № 1-2. DOI: 10.14258/izvasu(2015) 1.2-24
Connolly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelasticrock // Geodin. Acta. 1998. Vol. 11.
Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск. 1983.
Сибин А.Н. Математическая модель поршневого вытеснения жидкости в упругой пористой среде // Сборник трудов всероссийской конференции по математике «МАК-2016». Материалы молодежной прикладной IT школы «Математическое моделирование в экологии, агроэкологии и природопользовании». 2016.
Гилев П.В., Папин А.А. Исследование задачи двухфазной фильтрации в пороупругой среде в приближении двумерной ячейки Хеле-Шоу // Сборник тезисов евразийской конференции по прикладной математике. Новосибирск, 2021.
Антонцев С.Н., Папин А.А. Приближенные методы решения задач двухфазной фильтрации // Доклады Академии наук СССР. 1979. Т. 247. № 3.
Simpson M., Spiegelman M. Weinstein M.I. Degenerate Dispersive Equations Arising in the Study of Magma Dynamics // Nonlinearity. 2007. Vol. 20 (1). DOI: 10.1088/0951-7715/20/1/003.
Tokareva M.A. Localization of solutions of the equations of filtration in poroelastic medium // Journal of Siberian Federal Universit. Mathematics and Physics. 2015. Т. 8. № 4. DOI: 10.17516/19971397-2015-8-4-467-477.
Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic medium // Journal of Physics: Conference Series. 2016. Т. 722. № 1. DOI: 10.1088/1742-6596/722/1/012037
Токарева М.А., Папин А.А. Глобальная разрешимость системы уравнений одномерного движения вязкой жидкости в деформируемой вязкой пористой среде // Сибирский журнал индустриальной математики. 2019. Т. 22. № 2 (78). DOI: 10.1134/S1990478919020169.
Токарева М.А., Вирц Р.А., Ларионова В.Н. Математическая модель движения жидкости в пороупругом льду с учетом фазовых переходов и движения льда // Труды семинара по геометрии и математическому моделированию. 2021. №. 7. DOI: 10.17516/1997-1397-2020-13-6-763-773.
Saad A.S., Saad B. Saad M. Numerical Study of Compositional Compressible Degenerate Two-Phase Flow In Saturated-Unsaturated Heterogeneous Porous Media // Comput. Math. Appl. 2016. Vol. 71. № 2.
Morency C., Huismans R.S., Beaumont C. Fullsack P. A Numerical Model for Coupled Fluid Flow and Matrix Deformation with Applications to Disequilibrium Compaction and Delta Stability // J. Geophys. Res. 2007. B10407. DOI: 10. 1029/2006JB004701.
Chengwei Z., Chong P., Wei W., Chun W. A multi-layer SPH method for generic water-soil dynamic coupling problems. Part I: Revisit, theory, and validation // Computer Methods in Applied Mechanics and Engineering 396 (2/3/4) 2022. DOI: 10.1016/j.cma.2022.115106.
Бочаров О.Б., Рудяк В.Я., Серяков А.В. Простейшие модели деформирования пороупру-гой среды, насыщенной флюидами // Физикотехнические проблемы разработки полезных ископаемых. 2014. № 2.
Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М., 1967.

Загрузки

Опубликован

2022-09-09

Как цитировать

Существование слабого решения двумерной задачи фильтрации в тонком пороупругом слое: УДК 532.546+536.425. (2022). Известия Алтайского государственного университета, 4(126), 93-98. https://doi.org/10.14258/izvasu(2022)4-14

Похожие статьи

1-10 из 71

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Наиболее читаемые статьи этого автора (авторов)