Численное решение одномерной задачи фильтрации несжимаемой жидкости в вязкой пористой среде
DOI:
https://doi.org/10.14258/izvasu(2018)4-11Ключевые слова:
пористость, фильтрация, пороупругость, закон ДарсиАннотация
Процесс фильтрации жидкости в деформируемой пористой среде описывается системой, состоящей из уравнений сохранения массы для жидкой и твердой фаз, закона Дарси, реологического соотношения типа Максвела и закона сохранения баланса сил. Предполагается, что пороупругая среда обладает преимущественно вязкими свойствами и плотности фаз являются постоянными. В случае одной пространственной переменной переход к переменным Лагранжа позволяет свести исходную систему определяющих уравнений к одному уравнению для искомой пористости. Целью работы является численное исследование возникающей начально-краевой задачи. В пункте 1 дается постановка задачи и краткий обзор литературы по близким к данной теме работам. В пункте 2 проводится преобразование системы уравнений, в результате которого для пористости возникает нелинейное уравнение третьего порядка. В пункте 3 предложен алгоритм численного решения одномерной начально-краевой задачи. Для численной реализации используется однородная разностная схема для уравнения второго порядка с переменными коэффициентами и схема Рунге — Кутта второго порядка аппроксимации. Полученное решение удовлетворяет физическому принципу максимума. В пункте 4 рассматривается более общий случай сведения исходной системы к одному уравнению.
DOI 10.14258/izvasu(2018)4-11
Скачивания
Библиографические ссылки
Connoly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock // Geodin. — Acta. — 11 (1998).
Morency S., Huismans R.S., Beaumont C, Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Redearch. — 112 (2007). — B10407.
Нигматулин Р.И. Динамика многофазных сред. — М., 1987. — Ч. 1.
Simpson M., Spiegelman M., Weinstein C.I. Degenerate dispersive equations arising in the stady of magma dynamics // Nonlinearty. — 20 (2007).
Abourabia A.M., Hassan K.M., Morad A.M. Analytical solutions of the magma equations for molten rocks in a granular matrix // Chaos Solutions Fract. — 42 (2009).
Geng Y., Zhang L. Bifurcations of traveling wave solutions for the magma equations // Applied Mathematics and computation. — 217 (2010).
Гоман В.А., Папин А.А., Шишмарев К.А. Численное решение двумерной задачи движения воды и воздуха в тающем снеге // Известия Алтайского государственного университета. — 2014. — № 1-2.
Шишмарев К.А. Тепломассоперенос в тающем снеге // Труды молодых ученых Алтайского государственного университета. — 2011. — № 8.
Токарева М.А., Вирц Р.А. Аналитическое и численное исследование задачи фильтрации в пороупругой среде : cборник трудов Всероссийской конференции по математике. — 2016.
Байкин А. Н. Динамика трещины гидроразрыва пласта в неоднородной пороупругой среде: дис. ... физ.-мат. наук. — Новосибирск, 2016.
Dushin V.R., Nikitin V.F., Legros J.C., Silnikov M.V. Mathematical modeling of flows in porous media // WSEAS Transactions on Fluid Mechanics. — 2014. — T. 9.
Tokareva M.A. Solvability of initial boundary value problen for the equations of filtration poroelastic media // Journal of Physics: Conference Series. — 2016. — T. 722. — № 1.
Papin A.A., Tokareva M.A. Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium // Journal of Physics: Conference Series. — 2017. — T. 894. — № 1.
Papin A.A., Tokareva M.A. On Local solvability of the system of the equation of one dimensional motion of magma // Журнал Сибирского федерального университета. Серия: Математика и физика. — 2017. — T. 10. — № 3.
Токарева М.А. Конечное время стабилизации уравнений фильтрации жидкости в пороупругой среде // Известия Алтайского государственного университета. — 2015. — Т. 2. — № 1.
Самарский А.А., Гулин А.А. Численные методы. — М., 1989.
Самарский А.А. Теория разностных схем. — М., 1977.
Fowler A. Mathematical Geoscience. — Springer-Verlag London Limited, 2011.
Ларькин Н.А., Новиков В.А., Яненко Н.Н. Нелинейные уравнения переменного типа. — Новосибирск, 1983.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).