Исследование численного метода решения краевой задачи для дифференциального уравнения с дробной производной по времени
УДК 517.927
DOI:
https://doi.org/10.14258/izvasu(2020)4-10Ключевые слова:
уравнение дробного порядка, производная Капуто-Фабрицио, устойчивость, сходимость, априорная оценкаАннотация
В настоящее время замечается повышенный интерес к проблеме численной реализации моделей многофазной фильтрации в связи с ее огромной экономической значимостью в нефтедобывающей промышленности, гидрологии и управлении ядерных отходов. В отличие от классических моделей фильтрации, модели фильтрации в сильнопористых трещиноватых пластах с фрактальной геометрией скважин изучены недостаточно полно. Решение данной задачи сводится к решению системы дифференциальных уравнений с дробными производными. Построена конечно-разностная схема для решения начально-краевой задачи для уравнения конвекции-диффузии с производной дробного порядка по времени в смысле Капуто-Фабрицио. Получены априорные оценки для решения разностной задачи в предположении существования решения задачи в классе достаточно гладких функций, которые доказывают единственность решения и устойчивость разностной схемы. Показана сходимость решения разностной задачи к решению исходной дифференциальной задачи со вторым порядком по временной и пространственной переменным. Представлены результаты вычислительных экспериментов, подтверждающие достоверность теоретического анализа.
Скачивания
Библиографические ссылки
Alikhanov A.A. A new difference scheme for the time fractional diffusion equation // Journal of Computational Physics. 2015. T. 280. DOI: 10.1016/j.jcp.2014.09.031.
Berdyshev A., Eshmatov B., Kadirkulov B. Boundary value problems for fourth-order mixed type equation with fractional derivative // Electronic Journal of Differential Equations. 2016. № 36.
Agarwal P., Berdyshev A., Karimov E. Solvability of a Non-local Problem with Integral Transmitting Condition for Mixed Type Equation with Caputo Fractional Derivative // Results in Mathematics. 2017. DOI: 10.1007/s00025-016-0620-1.
Бештоков М.Х. Нелокальные краевые задачи для уравнения соболевского типа с дробной производной и сеточные методы их решения // Математические труды. 2018. T. 21, № 2. DOI: 10.17377/mattrudy.2018.21.203.
Beshtokov M. Boundary value problems for degenerate and degenerate fractional order differential equations with non-local linear source and difference methods for their numerical implementation // Ufimskii Mathematicheskii Zhurnal. 2019. Т. 11, № 2.
Kanwal A., Phang C., Iqbal U. Numerical Solution of Fractional Diffusion Wave Equation and Fractional Klein-Gordon Equation via Two-Dimensional Genocchi Polynomials with a Ritz-Galerkin Method // Computation. 2018. T. 6, № 40. DOI: 10.3390/computation6030040.
Jin B., Lazarov Y., Liu Y., Zhou Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation // Journal of Computational Physics. 2015. T. 281. DOI: 10.1016/j.jcp.2014.10.051.
Morales-Delgado V.F., Gomez-Aguilar J.F., Taneco-Hemandez M.A. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation, Revista Mexicana de Fisica. 2019. T. 65. DOI: 10.31349/RevMexFis.65.82.
Liu F., Zhuang P., Burrage K. Numerical methods and analysis for a class of fractional advection-dispersion models // Computers and Mathematics with Applications. 2012. T. 64 DOI: 10.1016/j.camwa.2012.01.020.
Alikhanov A.A. A priori estimates for solutions of boundary value problems for fractional-order equations Differential Equations. 2010. T. 46. DOI: 10.1134/S0012266110050058.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).